An algebraic framework for Itô's formula

David Kelly Martin Hairer

Mathematics Institute
University of Warwick
Coventry UK CV4 7AL
dtbkelly@gmail.com

April 26, 2013

Algebra and Combinatorics Seminar 2013, ICMAT Madrid.

Outline

1. A little bit about rough path theory
2. The geometric assumption
3. Two approaches to non-geometric rough paths
3.1 Branched
3.2 Quasi geometric
4. Geometric vs non-geometric
5. Itô's formula

Outline

1. A little bit about rough path theory
2. The geometric assumption
3. Two approaches to non-geometric rough paths
3.1 Branched
3.2 Quasi geometric
4. Geometric vs non-geometric
5. Itô's formula

Outline

1. A little bit about rough path theory
2. The geometric assumption
3. Two approaches to non-geometric rough paths
3.2 Quasi geometric
4. Geometric vs non-geometric
5. Itô's formula

Outline

1. A little bit about rough path theory
2. The geometric assumption
3. Two approaches to non-geometric rough paths
3.1 Branched
3.2 Quasi geometric
4. Geometric vs non-geometric
5. Itô's formula

Outline

1. A little bit about rough path theory
2. The geometric assumption
3. Two approaches to non-geometric rough paths
3.1 Branched
3.2 Quasi geometric
4. Geometric vs non-geometric
5. Itô's formula

Outline

1. A little bit about rough path theory
2. The geometric assumption
3. Two approaches to non-geometric rough paths
3.1 Branched
3.2 Quasi geometric
4. Geometric vs non-geometric
5. Itô's formula

The problem

We are interested in equations of the form

$$
d Y_{t}=\sum_{i} V_{i}\left(Y_{t}\right) d X_{t}^{i}
$$

where $X:[0, T] \rightarrow V$ is path with some Hölder exponent $\gamma \in(0,1)$, $Y:[0, T] \rightarrow U$ and $V_{i}: U \rightarrow U$ are smooth vector fields.

The theory of rough paths (Lyons) tells us that we should think of the equation as

where \mathbb{X} is an object containing X as well as information about the iterated integrals of X. We call \mathbb{X} a rough path above X.

The problem

We are interested in equations of the form

$$
d Y_{t}=\sum_{i} V_{i}\left(Y_{t}\right) d X_{t}^{i}
$$

where $X:[0, T] \rightarrow V$ is path with some Hölder exponent $\gamma \in(0,1)$, $Y:[0, T] \rightarrow U$ and $V_{i}: U \rightarrow U$ are smooth vector fields.

The theory of rough paths (Lyons) tells us that we should think of the equation as

$$
d Y_{t}=\sum_{i} V_{i}\left(Y_{t}\right) d \mathbb{X}_{t}
$$

where \mathbb{X} is an object containing X as well as information about the iterated integrals of X. We call \mathbb{X} a rough path above X.

Illustrating the idea

Consider the formal calculation (where everything is one dimensional) and X has $\gamma \in(1 / 4,1 / 3]$.

$$
Y_{t}=Y_{0}+\int_{0}^{t} V\left(Y_{s}\right) d X_{s}
$$

Illustrating the idea

Consider the formal calculation (where everything is one dimensional) and X has $\gamma \in(1 / 4,1 / 3]$.

$$
\begin{aligned}
Y_{t} & =Y_{0}+\int_{0}^{t} V\left(Y_{s}\right) d X_{s} \\
& =Y_{0}+\int_{0}^{t}\left(V\left(Y_{0}\right)+V^{\prime}\left(Y_{0}\right) \delta Y_{0, s}+\frac{1}{2} V^{\prime \prime}\left(Y_{0}\right) \delta Y_{0, s}^{2}+\ldots\right) d X_{s}
\end{aligned}
$$

Illustrating the idea

Consider the formal calculation (where everything is one dimensional) and X has $\gamma \in(1 / 4,1 / 3]$.

$$
\begin{aligned}
Y_{t} & =Y_{0}+\int_{0}^{t} V\left(Y_{s}\right) d X_{s} \\
& =Y_{0}+\int_{0}^{t}\left(V\left(Y_{0}\right)+V^{\prime}\left(Y_{0}\right) \delta Y_{0, s}+\frac{1}{2} V^{\prime \prime}\left(Y_{0}\right) \delta Y_{0, s}^{2}+\ldots\right) d X_{s} \\
& =Y_{0}+V\left(Y_{0}\right) \int_{0}^{t} d X_{s}+V^{\prime}\left(Y_{0}\right) V\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}} d X_{s_{2}} \\
& +V^{\prime}\left(Y_{0}\right) V^{\prime}\left(Y_{0}\right) V\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}} d X_{s_{2}} d X_{s_{3}} \\
& +\frac{1}{2} V^{\prime \prime}\left(Y_{0}\right) V\left(Y_{0}\right) V\left(Y_{0}\right) \int_{0}^{t} X_{s_{3}} X_{s_{3}} d X_{s_{3}}+\ldots
\end{aligned}
$$

Illustrating the idea

In more than one dimension, we similarly have

$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right) \int_{0}^{t} d X_{s}^{i}+D V_{i} \cdot V_{j}\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{j} d X_{s_{2}}^{i} \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i} \\
& +\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} X_{s_{3}}^{j} X_{s_{3}}^{k} d X_{s_{3}}^{i}+\ldots
\end{aligned}
$$

The blue integrals are the components of \mathbb{X}.
We always have

The only thing that distinguishes geo and non-geo is which algebra w comes from.

Illustrating the idea

In more than one dimension, we similarly have

$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right) \int_{0}^{t} d X_{s}^{i}+D V_{i} \cdot V_{j}\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{j} d X_{s_{2}}^{i} \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i} \\
& +\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} X_{s_{3}}^{j} X_{s_{3}}^{k} d X_{s_{3}}^{i}+\ldots
\end{aligned}
$$

The blue integrals are the components of \mathbb{X}.
We always have

$$
Y_{t}=Y_{0}+\sum_{w} V_{w}\left(Y_{0}\right) \mathbb{X}_{t}\left(e_{w}\right)
$$

The only thing that distinguishes geo and non-geo is which algebra w comes from.

The geometric assumption
Roughly speaking, a geometric rough path \mathbb{X} above X is a path indexed by tensors. The tensor components are "iterated integrals"

They must be "classical integrals", in that they satisfy the classical laws of calculus. For example, integration by parts holds

Hence, this is an assumption on the types of integrals appearing in the equation (\dagger).

The geometric assumption

Roughly speaking, a geometric rough path \mathbb{X} above X is a path indexed by tensors. The tensor components are "iterated integrals" of X.

$$
\begin{aligned}
& \left\langle\mathbb{X}_{t}, e_{i}\right\rangle=X_{t}^{i} \quad\left\langle\mathbb{X}_{t}, e_{i j}\right\rangle "=" \int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j} \\
& \text { and }\left\langle\mathbb{X}_{t}, e_{i j k}\right\rangle "=" \int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j} d X_{s_{3}}^{k}
\end{aligned}
$$

They must be "classical integrals", in that they satisfy the classical laws of calculus. For example, integration by parts holds

Hence, this is an assumption on the types of integrals appearing in the equation (\dagger).

The geometric assumption

Roughly speaking, a geometric rough path \mathbb{X} above X is a path indexed by tensors. The tensor components are "iterated integrals" of X.

$$
\begin{array}{r}
\left\langle\mathbb{X}_{t}, e_{i}\right\rangle=X_{t}^{i} \quad\left\langle\mathbb{X}_{t}, e_{i j}\right\rangle "=" \int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j} \\
\text { and } \quad\left\langle\mathbb{X}_{t}, e_{i j k}\right\rangle "=" \int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j} d X_{s_{3}}^{k}
\end{array}
$$

They must be "classical integrals", in that they satisfy the classical laws of calculus. For example, integration by parts holds ...

$$
X_{t}^{i} X_{t}^{j}=\int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j}+\int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j}
$$

Hence, this is an assumption on the types of integrals appearing in the equation (\dagger).

The geometric rough path approach (For a more rigorous definition ...)

Let $T(\mathcal{A})$ be the tensor product space generated by the alphabet \mathcal{A}. (If $V=\mathbb{R}^{d}$ then $\mathcal{A}=\{1, \ldots d\}$).

A geometric rough path of regularity γ is a path

such that

1. $\left\langle X_{t}, e_{w}\right\rangle\left\langle X_{t}, e_{v}\right\rangle=\left\langle X_{t}, e_{w} 山 e_{V}\right\rangle$,
2. $\left|\left\langle X_{s, t}, e_{w}\right\rangle\right| \leq C|t-s|^{|w| \gamma}$ for every word $w \in T(\mathcal{A})$
where $\|$ is the shuffle product and where $\mathbb{X}_{s, t}=\mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$
And Chen's relation follows from the definition

The geometric rough path approach (For a more rigorous definition ...)

Let $T(\mathcal{A})$ be the tensor product space generated by the alphabet \mathcal{A}. (If $V=\mathbb{R}^{d}$ then $\mathcal{A}=\{1, \ldots d\}$).

A geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T(\mathcal{A})^{*},
$$

such that
2. $\left|\left\langle\mathbb{X}_{s, t}, e_{w}\right\rangle\right| \leq C|t-s|^{|w| \gamma}$ for every word $w \in T(\mathcal{A})$
where w is the shuffle product and where $\mathbb{X}_{s, t}=\mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$
And Chen's relation follows from the definition

The geometric rough path approach

 (For a more rigorous definition ...)Let $T(\mathcal{A})$ be the tensor product space generated by the alphabet \mathcal{A}. (If $V=\mathbb{R}^{d}$ then $\mathcal{A}=\{1, \ldots d\}$).

A geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T(\mathcal{A})^{*},
$$

such that

1. $\left\langle\mathbb{X}_{t}, e_{w}\right\rangle\left\langle\mathbb{X}_{t}, e_{v}\right\rangle=\left\langle\mathbb{X}_{t}, e_{w} ш e_{v}\right\rangle$,
where \amalg is the shuffle product
And Chen's relation follows from the definition

The geometric rough path approach

 (For a more rigorous definition ...)Let $T(\mathcal{A})$ be the tensor product space generated by the alphabet \mathcal{A}. (If $V=\mathbb{R}^{d}$ then $\mathcal{A}=\{1, \ldots d\}$).

A geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T(\mathcal{A})^{*}
$$

such that

1. $\left\langle\mathbb{X}_{t}, e_{w}\right\rangle\left\langle\mathbb{X}_{t}, e_{v}\right\rangle=\left\langle\mathbb{X}_{t}, e_{w} ш e_{v}\right\rangle$,
2. $\left|\left\langle\mathbb{X}_{s, t}, e_{w}\right\rangle\right| \leq C|t-s|^{|w| \gamma}$ for every word $w \in T(\mathcal{A})$
where w is the shuffle product and where $\mathbb{X}_{s, t}=\mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$.
And Chen's relation follows from the definition

The geometric rough path approach

 (For a more rigorous definition ...)Let $T(\mathcal{A})$ be the tensor product space generated by the alphabet \mathcal{A}. (If $V=\mathbb{R}^{d}$ then $\mathcal{A}=\{1, \ldots d\}$).

A geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T(\mathcal{A})^{*}
$$

such that

1. $\left\langle\mathbb{X}_{t}, e_{w}\right\rangle\left\langle\mathbb{X}_{t}, e_{v}\right\rangle=\left\langle\mathbb{X}_{t}, e_{w} Ш e_{v}\right\rangle$,
2. $\left|\left\langle\mathbb{X}_{s, t}, e_{w}\right\rangle\right| \leq C|t-s|^{|w| \gamma}$ for every word $w \in T(\mathcal{A})$
where w is the shuffle product and where $\mathbb{X}_{s, t}=\mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$.
And Chen's relation follows from the definition

$$
\mathbb{X}_{s, t}=\mathbb{X}_{s, u} \otimes \mathbb{X}_{u, t}
$$

Why is geometricity a useful assumption?

Using geometricity, we can write

$$
\begin{aligned}
& \int_{0}^{t} X_{s_{3}}^{j} X_{s_{3}}^{k} d X_{s_{3}}^{i} \\
& \quad=\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i}+\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{j} d X_{s_{2}}^{k} d X_{s_{3}}^{i}
\end{aligned}
$$

So the expression $Y_{t}=Y_{0}+\ldots$ can be written entirely in terms of iterated integrals.
where we sum over all words $\mathcal{W} \subset T(\mathcal{A})$.

Why is geometricity a useful assumption?

Using geometricity, we can write

$$
\begin{aligned}
& \int_{0}^{t} X_{s_{3}}^{j} X_{s_{3}}^{k} d X_{s_{3}}^{i} \\
& \quad=\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i}+\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{j} d X_{s_{2}}^{k} d X_{s_{3}}^{i}
\end{aligned}
$$

So the expression $Y_{t}=Y_{0}+\ldots$ can be written entirely in terms of iterated integrals.

$$
Y_{t}=Y_{0}+\sum_{w \in \mathcal{W}} V_{w}\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, e_{w}\right\rangle,
$$

where we sum over all words $\mathcal{W} \subset T(\mathcal{A})$.

Non-geometric rough paths

What if the integrals in equations like (\dagger) don't obey the usual laws of calculus?

Eg. Riemann-sum integrals for non-semimartingales (Burdzy, Swanson), Russo-Vallois integrals, Newton-Côtes integrals (Nourdin, Russo, et al)

This still fits into the framework of rough paths, but we need to add a few

 more components to \mathbb{X}.
Non-geometric rough paths

What if the integrals in equations like (\dagger) don't obey the usual laws of calculus?

Eg. Riemann-sum integrals for non-semimartingales (Burdzy, Swanson), Russo-Vallois integrals, Newton-Côtes integrals (Nourdin, Russo, et al)

This still fits into the framework of rough paths, but we need to add a few more components to \mathbb{X}.

First non-geometric approach: Branched rough paths

Instead of tensors, the components of \mathbb{X} are indexed by labelled trees

with the same labels used to index the basis of V (or the alphabet $\mathcal{A})$.

First non-geometric approach: Branched rough paths

Instead of tensors, the components of \mathbb{X} are indexed by labelled trees

$$
\bullet_{i},:_{j}^{j}, \boldsymbol{:}_{k}^{j}, \dot{\nabla}_{\alpha_{k}^{j}}^{j}, \ldots
$$

with the same labels used to index the basis of V (or the alphabet \mathcal{A}). And we have

$$
\begin{aligned}
& \left\langle\mathbb{X}_{t}, \bullet i\right\rangle=X_{t}^{i}, \quad\left\langle\mathbb{X}_{t}, \boldsymbol{:}_{j}^{j}\right\rangle=\int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j} \\
& \left\langle\mathbb{X}_{t}, \boldsymbol{\phi}_{k}^{i} k\right\rangle=\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{i} d X_{s_{2}}^{j} d X_{s_{3}}^{k}, \quad\left\langle\mathbb{X}_{t}, \dot{o}_{k}^{\alpha_{k}^{j}}\right\rangle=\int_{0}^{t} X_{s_{3}}^{i} X_{s_{3}}^{j} d X_{s_{3}}^{k}
\end{aligned}
$$

The object \mathbb{X} is known as a branched rough path (Gubinelli).

Branched rough paths

(For a more rigorous definition ...)
Let $\left(\mathcal{H}_{c k}, \cdot, \Delta\right)$ be the Connes-Kreimer Hopf algebra generated by the alphabet \mathcal{A}, with the "forest product" • and the cutting coproduct Δ.

A branched rough path of regularity γ is a path

such that

Branched rough paths
(For a more rigorous definition ...)
Let $\left(\mathcal{H}_{C K}, \cdot, \Delta\right)$ be the Connes-Kreimer Hopf algebra generated by the alphabet \mathcal{A}, with the "forest product" . and the cutting coproduct Δ.

A branched rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow \mathcal{H}_{C K}^{*},
$$

such that

Branched rough paths
(For a more rigorous definition ...)
Let $\left(\mathcal{H}_{C K}, \cdot, \Delta\right)$ be the Connes-Kreimer Hopf algebra generated by the alphabet \mathcal{A}, with the "forest product" . and the cutting coproduct Δ.

A branched rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow \mathcal{H}_{C K}^{*},
$$

such that

1. $\left\langle\mathbb{X}_{t}, \tau_{1}\right\rangle\left\langle\mathbb{X}_{t}, \tau_{2}\right\rangle=\left\langle\mathbb{X}_{t}, \tau_{1} \tau_{2}\right\rangle$,
where $\mathbb{X}_{s, t}=\mathbb{X}_{s}^{-1} \star \mathbb{X}_{t}$ with \star being the Grossman-Larson product And a slightly different Chen's relation follows from the definition

Branched rough paths

(For a more rigorous definition ...)
Let $\left(\mathcal{H}_{C K}, \cdot, \Delta\right)$ be the Connes-Kreimer Hopf algebra generated by the alphabet \mathcal{A}, with the "forest product" . and the cutting coproduct Δ.

A branched rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow \mathcal{H}_{C K}^{*},
$$

such that

1. $\left\langle\mathbb{X}_{t}, \tau_{1}\right\rangle\left\langle\mathbb{X}_{t}, \tau_{2}\right\rangle=\left\langle\mathbb{X}_{t}, \tau_{1} \tau_{2}\right\rangle$,
2. $\left|\left\langle\mathbb{X}_{s, t}, \tau\right\rangle\right| \leq C|t-s|^{|\tau| \gamma}$ for every tree $\tau \in \mathcal{H}_{C K}$
where $\mathbb{X}_{s, t}=\mathbb{X}_{s}^{-1} \star \mathbb{X}_{t}$ with \star being the Grossman-Larson product
And a slightly different Chen's relation follows from the definition

Branched rough paths

(For a more rigorous definition ...)
Let $\left(\mathcal{H}_{C K}, \cdot, \Delta\right)$ be the Connes-Kreimer Hopf algebra generated by the alphabet \mathcal{A}, with the "forest product" . and the cutting coproduct Δ.

A branched rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow \mathcal{H}_{C K}^{*},
$$

such that

1. $\left\langle\mathbb{X}_{t}, \tau_{1}\right\rangle\left\langle\mathbb{X}_{t}, \tau_{2}\right\rangle=\left\langle\mathbb{X}_{t}, \tau_{1} \tau_{2}\right\rangle$,
2. $\left|\left\langle\mathbb{X}_{s, t}, \tau\right\rangle\right| \leq C|t-s|^{|\tau| \gamma}$ for every tree $\tau \in \mathcal{H}_{C K}$
where $\mathbb{X}_{s, t}=\mathbb{X}_{s}^{-1} \star \mathbb{X}_{t}$ with \star being the Grossman-Larson product
And a slightly different Chen's relation follows from the definition

$$
\mathbb{X}_{s, t}=\mathbb{X}_{s, u} \star \mathbb{X}_{u, t}
$$

The example

So the expression

$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right) \int_{0}^{t} d X_{s}^{i}+D V_{i} \cdot V_{j}\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{j} d X_{s_{2}}^{i} \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i} \\
& +\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right) \int_{0}^{t}\left(\int_{0}^{s_{2}} d X_{s_{1}}^{j}\right)\left(\int_{0}^{s_{2}} d X_{s_{1}}^{k}\right) d X_{s_{2}}^{i}+\ldots
\end{aligned}
$$

becomes

$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \bullet_{i}\right\rangle+D V_{i} \cdot V_{j}\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \bullet_{i}^{j}\right\rangle \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \boldsymbol{Q}_{i}^{k}\right\rangle+\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \boldsymbol{0}_{k}^{j}\right\rangle+\ldots
\end{aligned}
$$

More generally

The example

So the expression

$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right) \int_{0}^{t} d X_{s}^{i}+D V_{i} \cdot V_{j}\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{j} d X_{s_{2}}^{i} \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i} \\
& +\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right) \int_{0}^{t}\left(\int_{0}^{s_{2}} d X_{s_{1}}^{j}\right)\left(\int_{0}^{s_{2}} d X_{s_{1}}^{k}\right) d X_{s_{2}}^{i}+\ldots
\end{aligned}
$$

becomes

$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \bullet_{i}\right\rangle+D V_{i} \cdot V_{j}\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \bullet_{i}^{j}\right\rangle \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \boldsymbol{q}_{i}^{k}\right\rangle+\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right)\left\langle\mathbb{X}_{t},,_{0_{k}^{j}}^{j}\right\rangle+\ldots
\end{aligned}
$$

More generally

$$
Y_{t}=Y_{0}+\sum_{\tau} V_{\tau}\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, \tau\right\rangle
$$

Second approach: Generalised integration by parts

There is a natural way to generalise the classical integration by parts formula. For any path X, the expression

$$
X_{s, t}^{(i j)} \stackrel{\text { def }}{=} \delta X_{s, t}^{i} \delta X_{s, t}^{j}-\int_{s}^{t} \int_{s}^{r_{2}} d X_{r_{1}}^{i} d X_{r_{2}}^{j}-\int_{s}^{t} \int_{s}^{r_{2}} d X_{r_{1}}^{j} d X_{r_{2}}^{i}
$$

is always the increment of a path. ie. $X_{s, t}^{(i j)}=X_{t}^{(i j)}-X_{s}^{(i j)}$.

Second approach: Generalised integration by parts

 If we look back at the calculation ...$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right) \int_{0}^{t} d X_{s}^{i}+D V_{i} \cdot V_{j}\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{j} d X_{s_{2}}^{i} \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i} \\
& +\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right)\left(\int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{(i j)} d X_{s_{2}}^{k}\right. \\
& \left.+\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i}+\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i}\right)+\ldots
\end{aligned}
$$

Second approach: Generalised integration by parts

 If we look back at the calculation ...$$
\begin{aligned}
Y_{t} & =Y_{0}+V_{i}\left(Y_{0}\right) \int_{0}^{t} d X_{s}^{i}+D V_{i} \cdot V_{j}\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{j} d X_{s_{2}}^{i} \\
& +D V_{i} \cdot\left(D V_{j} \cdot V_{k}\right)\left(Y_{0}\right) \int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i} \\
& +\frac{1}{2} D^{2} V_{i}:\left(V_{j}, V_{k}\right)\left(Y_{0}\right)\left(\int_{0}^{t} \int_{0}^{s_{2}} d X_{s_{1}}^{(i j)} d X_{s_{2}}^{k}\right. \\
& \left.+\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i}+\int_{0}^{t} \int_{0}^{s_{3}} \int_{0}^{s_{2}} d X_{s_{1}}^{k} d X_{s_{2}}^{j} d X_{s_{3}}^{i}\right)+\ldots
\end{aligned}
$$

We still have tensors, but now with more letters.

$$
Y_{t}=Y_{0}+\sum_{w} V_{w}\left(Y_{0}\right)\left\langle\mathbb{X}_{t}, e_{w}\right\rangle
$$

The quasi-shuffle algebra
Given an (ordered) alphabet \mathcal{A}, we define the extended alphabet \mathcal{A}_{∞} by

$$
\begin{aligned}
\mathcal{A}_{\infty} & \stackrel{\text { def }}{=}\left\{\left(a_{1} \ldots a_{k}\right): a_{i} \in \mathcal{A}, a_{i} \leq a_{i+1}, k \geq 1\right\} \\
& =\{i,(i j),(i j k), \ldots\}
\end{aligned}
$$

We define the quasi-shuffle algebra $T\left(\mathcal{A}_{\infty}\right)$ to be the vector space of words composed of the letters \mathcal{A}_{∞}

The grading is given by

A typical element in $T^{3}\left(\mathcal{A}_{\infty}\right)$ would be

$$
c_{i j k}+e_{i(j k)}+3 e_{(i j) k}-e_{(i j k)}
$$

The quasi-shuffle algebra
Given an (ordered) alphabet \mathcal{A}, we define the extended alphabet \mathcal{A}_{∞} by

$$
\begin{aligned}
\mathcal{A}_{\infty} & \stackrel{\text { def }}{=}\left\{\left(a_{1} \ldots a_{k}\right): a_{i} \in \mathcal{A}, a_{i} \leq a_{i+1}, k \geq 1\right\} \\
& =\{i,(i j),(i j k), \ldots\}
\end{aligned}
$$

We define the quasi-shuffle algebra $T\left(\mathcal{A}_{\infty}\right)$ to be the vector space of words composed of the letters \mathcal{A}_{∞}.

The grading is given by

A typical element in $T^{3}\left(\mathcal{A}_{\infty}\right)$ would be $e_{i j k}+e_{i(j k)}+3 e_{(j j) k}-e_{(i j k)}$

The quasi-shuffle algebra

Given an (ordered) alphabet \mathcal{A}, we define the extended alphabet \mathcal{A}_{∞} by

$$
\begin{aligned}
\mathcal{A}_{\infty} & \stackrel{\text { def }}{=}\left\{\left(a_{1} \ldots a_{k}\right): a_{i} \in \mathcal{A}, a_{i} \leq a_{i+1}, k \geq 1\right\} \\
& =\{i,(i j),(i j k), \ldots\}
\end{aligned}
$$

We define the quasi-shuffle algebra $T\left(\mathcal{A}_{\infty}\right)$ to be the vector space of words composed of the letters \mathcal{A}_{∞}.

The grading is given by

$$
T\left(\mathcal{A}_{\infty}\right)=\bigoplus_{k=0}^{\infty} T^{k}\left(\mathcal{A}_{\infty}\right) \stackrel{\text { def }}{=} \bigoplus_{k=0}^{\infty} \operatorname{span}\left\{e_{\alpha_{1} \ldots \alpha_{n}}:\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|=k\right\}
$$

A typical element in $T^{3}\left(\mathcal{A}_{\infty}\right)$ would be

$$
e_{i j k}+e_{i(j k)}+3 e_{(i j) k}-e_{(i j k)} .
$$

Quasi-shuffle product

We define the quasi shuffle product on $T\left(\mathcal{A}_{\infty}\right)$ by

$$
w \widehat{\amalg} v=\alpha(w \widehat{\amalg} \beta v)+\beta(\alpha w \widehat{\amalg} v)+(\alpha \beta)(w \widehat{\amalg} v) .
$$

For example,

$$
i \widehat{山} j=i j+j i+(i j) \quad, \quad i \widehat{山} j k=i j k+j i k+j k i+(i j) k+j(i k) .
$$

Together with deconcatenation Δ, the triple $\left(T\left(\mathcal{A}_{\infty}\right), \widehat{\mathbb{U}}, \Delta\right)$ is a Hopf algebra.

Quasi-shuffle product

We define the quasi shuffle product on $T\left(\mathcal{A}_{\infty}\right)$ by

$$
w \widehat{\amalg} v=\alpha(w \widehat{\amalg} \beta v)+\beta(\alpha w \widehat{\amalg} v)+(\alpha \beta)(w \widehat{\amalg} v) .
$$

For example,

$$
i \widehat{\amalg} j=i j+j i+(i j) \quad, \quad i \widehat{山} j k=i j k+j i k+j k i+(i j) k+j(i k) .
$$

Together with deconcatenation Δ, the triple $\left(T\left(\mathcal{A}_{\infty}\right), \widehat{Ш}, \Delta\right)$ is a Hopf algebra.

Quasi geometric rough path

A quasi geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T\left(\mathcal{A}_{\infty}\right)^{*}
$$

such that

1. $\mathbb{X}_{t}\left(e_{w} \widehat{\omega} e_{V}\right)=\mathbb{X}_{t}\left(e_{w}\right) \mathbb{X}_{t}\left(e_{v}\right)$ for each t

where $\mathbb{X}_{s, t} \stackrel{\text { def }}{=} \mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$.
And again Chen's relation follows from the definition

Quasi geometric rough path

A quasi geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T\left(\mathcal{A}_{\infty}\right)^{*}
$$

such that

1. $\mathbb{X}_{t}\left(e_{w} \widehat{山} e_{v}\right)=\mathbb{X}_{t}\left(e_{w}\right) \mathbb{X}_{t}\left(e_{v}\right)$ for each t
2. $\left|\mathbb{X}_{s, t}\left(e_{w}\right)\right| \leq C|t-s|^{|w| \gamma}$ for all $w \in T\left(\mathcal{A}_{\infty}\right)$,
where $\mathbb{X}_{s, t} \stackrel{\text { def }}{=} \mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$.
And again Chen's relation follows from the definition

Quasi geometric rough path

A quasi geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T\left(\mathcal{A}_{\infty}\right)^{*}
$$

such that

1. $\mathbb{X}_{t}\left(e_{w} \widehat{山} e_{v}\right)=\mathbb{X}_{t}\left(e_{w}\right) \mathbb{X}_{t}\left(e_{v}\right)$ for each t
2. $\left|\mathbb{X}_{s, t}\left(e_{w}\right)\right| \leq C|t-s|^{|w| \gamma}$ for all $w \in T\left(\mathcal{A}_{\infty}\right)$,
where $\mathbb{X}_{s, t} \stackrel{\text { def }}{=} \mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$.
And again Chen's relation follows from the definition

Quasi geometric rough path

A quasi geometric rough path of regularity γ is a path

$$
\mathbb{X}:[0, T] \rightarrow T\left(\mathcal{A}_{\infty}\right)^{*}
$$

such that

1. $\mathbb{X}_{t}\left(e_{w} \widehat{山} e_{v}\right)=\mathbb{X}_{t}\left(e_{w}\right) \mathbb{X}_{t}\left(e_{v}\right)$ for each t
2. $\left|\mathbb{X}_{s, t}\left(e_{w}\right)\right| \leq C|t-s|^{|w| \gamma}$ for all $w \in T\left(\mathcal{A}_{\infty}\right)$,
where $\mathbb{X}_{s, t} \stackrel{\text { def }}{=} \mathbb{X}_{s}^{-1} \otimes \mathbb{X}_{t}$.
And again Chen's relation follows from the definition

$$
\mathbb{X}_{s, t}=\mathbb{X}_{s, u} \otimes \mathbb{X}_{u, t}
$$

Justification of quasi geometric rough paths

- For $\gamma>1 / 4$ (and to some extent $\gamma>1 / 5$), they are the same as branched rough paths.
- Every example of discretisation/regularisation (that I have seen!) satisfies such an integration by parts formula.
- The results are much nicer than branched rough paths.

Justification of quasi geometric rough paths

- For $\gamma>1 / 4$ (and to some extent $\gamma>1 / 5$), they are the same as branched rough paths.
- Every example of discretisation/regularisation (that I have seen!) satisfies such an integration by parts formula.
- The results are much nicer than branched rough paths.

Justification of quasi geometric rough paths

- For $\gamma>1 / 4$ (and to some extent $\gamma>1 / 5$), they are the same as branched rough paths.
- Every example of discretisation/regularisation (that I have seen!) satisfies such an integration by parts formula.
- The results are much nicer than branched rough paths.

Properties

The nice thing about the quasi shuffle product algebra is that it is isomorphic to the usual shuffle product algebra.

Theorem (Hoffman 00')

There exists a graded, linear bijection

$$
\psi:\left(T\left(\mathcal{A}_{\infty}\right), \widehat{Ш}, \Delta\right) \rightarrow\left(T\left(\mathcal{A}_{\infty}\right), ш, \Delta\right)
$$

such that

1. $\psi\left(e_{w} \widehat{Ш} e_{v}\right)=\psi\left(e_{w}\right) Ш \psi\left(e_{v}\right)$
2. $\psi^{*}\left(e_{w}^{*} \otimes e_{v}^{*}\right)=\psi^{*}\left(e_{w}^{*}\right) \otimes \psi^{*}\left(e_{v}^{*}\right)$

Turning quasi into geometric rough paths

If \mathbb{X} is a quasi geometric rough path, it follows easily that $\overline{\mathbb{X}}$ defined by

$$
\overline{\mathbb{X}}_{t}\left(e_{w}\right) \stackrel{\text { def }}{=} \mathbb{X}_{t}\left(\psi^{-1}\left(e_{w}\right)\right)
$$

is a geometric rough path on $T\left(\mathcal{A}_{\infty}\right)$.

Itô-Stratonovich

The solution to (\dagger) can be written as

$$
Y_{t}=\sum_{w \in \mathcal{W}_{\infty}} V_{w}\left(Y_{0}\right) \mathbb{X}_{t}\left(e_{w}\right)
$$

By applying the transformation,

So can we find another equation, driven by $\overline{\mathbb{X}}$, whose solution is Y ?

Itô-Stratonovich

The solution to (\dagger) can be written as

$$
Y_{t}=\sum_{w \in \mathcal{W}_{\infty}} V_{w}\left(Y_{0}\right) \mathbb{X}_{t}\left(e_{w}\right)
$$

By applying the transformation,

$$
Y_{t}=\sum_{v \in \mathcal{W}_{\infty}} \bar{V}_{v}\left(Y_{0}\right) \overline{\mathbb{X}}_{t}\left(e_{v}\right)
$$

where

$$
\bar{V}_{v} \stackrel{\text { def }}{=} \sum_{w \in \mathcal{W}_{\infty}} e_{v}^{*}\left(\psi\left(e_{w}\right)\right) V_{w} .
$$

So can we find another equation, driven by $\overline{\mathbb{X}}$, whose solution is Y ?

Itô-Stratonovich

The solution to (\dagger) can be written as

$$
Y_{t}=\sum_{w \in \mathcal{W}_{\infty}} V_{w}\left(Y_{0}\right) \mathbb{X}_{t}\left(e_{w}\right)
$$

By applying the transformation,

$$
Y_{t}=\sum_{v \in \mathcal{W}_{\infty}} \bar{V}_{v}\left(Y_{0}\right) \overline{\mathbb{X}}_{t}\left(e_{v}\right)
$$

where

$$
\bar{V}_{v} \stackrel{\text { def }}{=} \sum_{w \in \mathcal{W}_{\infty}} e_{v}^{*}\left(\psi\left(e_{w}\right)\right) V_{w}
$$

So can we find another equation, driven by $\overline{\mathbb{X}}$, whose solution is Y ?

Itô-Stratonovich

Theorem (MH,DK)

Let \mathbb{X} be a quasi geometric rough path of regularity γ and let N be the largest integer such that $N \gamma \leq 1$. Let $\overline{\mathbb{X}}=\mathbb{X} \circ \psi^{-1}$. Then Y solves

$$
d Y_{t}=V_{i}\left(Y_{t}\right) d X_{t}^{i} \quad \text { driven by } \mathbb{X}
$$

if and only if Y solves

$$
d Y_{t}=\bar{V}_{\left(a_{1} \ldots a_{k}\right)}\left(Y_{t}\right) d \bar{X}_{t}^{\left(a_{1} \ldots a_{k}\right)} \quad \text { driven by } \overline{\mathbb{X}}
$$

where we sum over all multi-indices $\left(a_{1} \ldots a_{k}\right) \in \mathcal{A}_{\infty}$ with $k \leq N$.

Itô's formula?

Theorem
Suppose Y solves (\dagger) and let $F: U \rightarrow U$ be smooth. Then

$$
F\left(Y_{t}\right)=F\left(Y_{0}\right)+\int_{0}^{t} D F \cdot V_{i}\left(Y_{s}\right) d X_{s}^{i}+? ? ? \quad \text { driven by } \mathbb{X}
$$

Itô's formula?

Since Y solves a geometric equation, we have that

$$
F\left(Y_{t}\right)=F\left(Y_{0}\right)+\int_{0}^{t} D F \cdot \bar{V}_{\left(a_{1} \ldots a_{k}\right)}\left(Y_{s}\right) d \bar{X}_{s}^{\left(a_{1} \ldots a_{k}\right)} \quad \text { driven by } \overline{\mathbb{X}}
$$

By a Taylor expansion, and since Y solves the geometric equation, we know that

$$
D F \cdot \bar{V}_{\left(b_{1} \ldots b_{n}\right)}\left(Y_{s}\right)=\sum_{w} G_{w}\left(F,\left(b_{1} \ldots b_{n}\right)\right)\left(Y_{0}\right) \overline{\mathbb{X}}_{s}\left(e_{w}\right) .
$$

Itô's formula

It follows that
$\int_{0}^{t} D F \cdot \bar{V}_{\left(a_{1} \ldots a_{k}\right)}\left(Y_{s}\right) d \bar{X}_{s}^{\left(a_{1} \ldots a_{k}\right)}=\sum_{w} G_{w}\left(F,\left(a_{1} \ldots a_{k}\right)\right)\left(Y_{0}\right) \overline{\mathbb{X}}_{t}\left(e_{w\left(a_{1} \ldots a_{k}\right)}\right)$
But we can convert this back into \mathbb{X} by

$$
\begin{aligned}
\sum_{w} & G_{w}\left(F,\left(a_{1} \ldots a_{k}\right)\right)\left(Y_{0}\right) \overline{\mathbb{X}}_{t}\left(e_{w\left(a_{1} \ldots a_{k}\right)}\right) \\
& =\sum_{\left(b_{1} \ldots b_{n}\right)} \sum_{u} \hat{G}_{u\left(b_{1} \ldots b_{n}\right)}\left(F,\left(a_{1} \ldots a_{k}\right)\right)\left(Y_{0}\right) \mathbb{X}_{t}\left(e_{u\left(b_{1} \ldots b_{n}\right)}\right),
\end{aligned}
$$

where

$$
\hat{G}_{u\left(b_{1} \ldots b_{n}\right)}\left(F,\left(a_{1} \ldots a_{k}\right)\right)=\sum G_{w}\left(F,\left(a_{1} \ldots a_{k}\right)\right) e_{u\left(b_{1} \ldots b_{n}\right)}^{*}\left(\psi^{-1}\left(e_{w\left(a_{1} \ldots a_{k}\right)}\right)\right)
$$

Itô's formula

Theorem (MH,DK)
Suppose Y solves (\dagger) and let $F: U \rightarrow U$ be smooth. Then

$$
\begin{aligned}
F\left(Y_{t}\right)=F\left(Y_{0}\right) & +\int_{0}^{t} D F \cdot V_{i}\left(Y_{s}\right) d X_{s}^{i} \\
& +\int_{0}^{t} D^{k} F:\left(V_{a_{1}}, \ldots, V_{a_{k}}\right)\left(Y_{s}\right) d X_{s}^{\left(a_{1} \ldots a_{k}\right)}
\end{aligned}
$$

(driven by $\mathbb{X})$ where we sum over all $\left(a_{1} \ldots a_{k}\right) \in \mathcal{A}_{\infty}$ with $2 \leq k \leq N$.

Rough numerical schemes

Suppose $Y(n)$ is an approximation of Y, obtained using a "discretization" of a rough path \mathbb{X} that satisfies the quasi shuffle relations. We can equally approximate Y by approximating the equation

$$
d Y_{t}=\bar{V}_{\left(a_{1} \ldots a_{k}\right)}\left(Y_{t}\right) d \bar{X}_{t}^{\left(a_{1} \ldots a_{k}\right)} \quad \text { driven by } \overline{\mathbb{X}}
$$

using a discretization of $\overline{\mathbb{X}}$.
This is significant because $\overline{\mathbb{X}}$ can always be approximated by "smooth rough paths"

Rough numerical schemes

Suppose $Y(n)$ is an approximation of Y, obtained using a "discretization" of a rough path \mathbb{X} that satisfies the quasi shuffle relations. We can equally approximate Y by approximating the equation

$$
d Y_{t}=\bar{V}_{\left(a_{1} \ldots a_{k}\right)}\left(Y_{t}\right) d \bar{X}_{t}^{\left(a_{1} \ldots a_{k}\right)} \quad \text { driven by } \overline{\mathbb{X}},
$$

using a discretization of \bar{X}.
This is significant because $\overline{\mathbb{X}}$ can always be approximated by "smooth rough paths".

