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What is data assimilation?
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What is data assimilation?

Suppose u satisfies an evolution equation

du

dt
= F (u)

with some unknown initial condition u0 ∼ µ0.

There is a true trajectory of u that is producing partial, noisy observations
at times t = h, 2h, . . . , nh:

yn = Hun + ξn

where H is a linear operator (think low rank projection), un = u(nh), and
ξn ∼ N(0, Γ) iid.

The aim of data assimilation is to characterize the conditional
distribution of un given the observations {y1, . . . , yn}
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The conditional distribution is updated
via the filtering cycle.
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Illustration (Initialization)
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Figure: The blue circle
represents our initial
uncertainty u0 ∼ µ0.
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Illustration (Forecast step)
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Figure: Apply the time h
flow map Ψ. This
produces a new
probability measure
which is our forecasted
estimate of u1. This is
called the forecast step.
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Illustration (Make an observation)
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Figure: We make an
observation
y1 = Hu1 + ξ1. In the
picture, we only observe
the x variable.
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Illustration (Analysis step)
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y

Ψ

obs

Figure: Using Bayes
formula we compute the
conditional distribution
of u1|y1. This new
measure (called the
posterior) is the new
estimate of u1. The
uncertainty of the
estimate is reduced by
incorporating the
observation. The
forecast distribution
steers the update from
the observation.
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Bayes’ formula filtering update

Let Y n = {y1, . . . , yn}. We want to compute the conditional density
P(un+1|Y n+1), using P(un|Y n) and yn+1.

By Bayes’ formula, we have

P(un+1|Y n+1) = P(un+1|Y n, yn+1) ∝ P(yn+1|un+1)P(un+1|Y n)

But we need to compute the integral

P(un+1|Y n) =

∫
P(un+1|Y n, un)P(un|Y n)dun .
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In general there are no closed formulas for the Bayesian
densities. One typically approximates the densities with a

sampling procedure.

Applications can be very high dimensional (eg. robotics,
numerical weather prediction) which makes the sampling

problem highly non-trivial.
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Particle filters approximate the posterior empirically

P(uk |Y k) ≈
N∑

n=1

1

N
δ(uk − u

(n)
k )

the particles {u(n)
k }Nn=1 can be updated in different ways,

giving rise to different particle filters.
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Model Assumption

We always assume a conditionally Gaussian model

uk+1 = ψ(uk) + ηk , ηk ∼ N(0,Σ) i.i.d.

where ψ is deterministic, with observations

yk+1 = Huk+1 + ξk+1 , ξk ∼ N(0, Γ) i.i.d.

This facilitates the implementation and theory for particles filters and is a
realistic assumption for many practical problems.

We denote the posterior, with density P(uk |Y K ), by µk and denote the
particle filter approximations by µNk .
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The standard particle filter
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Figure: Start with N

particles {u(n)
k }Nn=1

giving an empirical
approx of µk .

P(uk |Y k) ≈ 1

N

N∑
n=1

δ(uk − u
(n)
k )
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Apply dynamics to particles

x

y

obs

Figure: Apply the
dynamics to each
particle

û
(n)
k+1 = ψ(u

(n)
k ) + η

(n)
k

P(uk+1|Y k) ≈
N∑

n=1

1

N
δ(uk+1 − û

(n)
k+1)
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Make an observation

x

y

Ψ

obs
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Weight the forecast particles

x

y

Ψ

obs

Figure: Assign weights w
(n)
k+1 to the particles, closer agreement with obs = larger

weight. Weights are normalized
∑N

n=1 w
(n)
k+1 = 1.
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Re-sample the weighted particles

x

y

×2
×2

Ψ

obs

Figure: Sample

{u(n)
k+1}Nn=1 from

{û(n)
k+1}Nn=1 with weights

{w (n)
k+1}Nn=1.

P(uk+1|Y k+1) ≈
N∑

n=1

1

N
δ(uk+1 − u

(n)
k+1)

David Kelly (CIMS) Data assimilation November 29, 2016 10 / 34



The standard particle filter

We represent the standard particle filter as a random dynamical system

û
(n)
k+1 = ψ(u

(n)
k ) + η

(n)
k

u
(n)
k+1 =

N∑
m=1

1
[x

(m)
k+1,x

(m+1)
k+1 )

(r
(m)
k )û

(m)
k

where r
(n)
k+1 is uniformly distributed on [0, 1] and

x
(m+1)
k+1 = x

(m)
k+1 + w

(m)
k+1 , x

(1)
k+1 = 0

ie. pick û
(m)
k+1 with probability w

(m)
k+1.
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The motivation: importance sampling

If p(x) is a probability density, the empirical approximation of p is given by

p(x) ≈ 1

N

N∑
n=1

δ(x − x (n))

where x (n) are samples from p.

When p is difficult to sample from, we can instead use the importance
sampling approximation

p(x) ≈ 1

N

N∑
n=1

p(x̂ (n))

q(x̂ (n))
δ(x − x̂ (n))

where x̂ (n) are samples from a different probability density q.
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The motivation: standard particle filter

We have samples {u(n)
k }

N
n=1 from P(uk |Y k) that we wish to update into

samples from P(uk+1|Y k+1).

Note that uk |Y k is a Markov chain with kernel

pk(uk , duk+1) = Z−1P(yk+1|uk+1)P(uk+1|uk)

If we could draw u
(n)
k+1 from pk(u

(n)
k , duk+1) then we would have

u
(n)
k+1 ∼ P(uk+1|Y k+1).
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The motivation: standard particle filter

It is too difficult to sample directly, so we instead draw û
(n)
k+1 from

q(uk+1) = P(uk+1|u
(n)
k ) and get the importance sampling approximation

P(uk+1|Y k+1) ≈ 1

N

N∑
n=1

Z−1P(yk+1|û
(n)
k+1)δ(uk+1 − û

(n)
k+1)

Since we cannot compute Z , approximate the weights by

w
(n),∗
k+1 = P(yk+1|û

(n)
k+1) ∝ exp

(
−1

2
|yk+1 − Hû

(n)
k+1|

2
Γ

)
w

(n)
k+1 =

w
(n),∗
k+1∑N

n=1 w
(n),∗
k+1

Notation: | · |A = 〈A−1·, ·〉
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A different approach

Another approach

pk(u
(n)
k , duk+1)

∝ P(yk+1|uk+1)P(uk+1|u
(n)
k )

= Z−1
Γ exp

(
−1

2
|yk+1 − Huk+1|2Γ

)
Z−1

Σ exp

(
−1

2
|uk+1 − ψ(u

(n)
k )|2Σ

)
= Z−1

S exp

(
−1

2
|yk+1 − Hψ(u

(n)
k )|2S

)
Z−1
C exp

(
−1

2
|uk+1 −m

(n)
k+1|

2
C

)
by product of Gaussian densities formulae , and

C−1 = Σ−1 + HTΓ−1H

S = HΣHT + Γ

m
(n)
k+1 = C (Σ−1ψ(u

(n)
k ) + HTΓ−1yk+1) = (I − KH)ψ(uk) + Kyk+1
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If q(uk+1) = Z−1
C exp

(
−1

2 |uk+1 −m
(n)
k+1|

2
C

)
then the importance sampling

approximation is given by

P(uk+1|Y k+1) ≈ 1

N

N∑
n=1

Z−1 exp

(
−1

2
|yk+1 − Hψ(u

(n)
k )|2S

)
δ(uk+1−û

(n)
k+1)

where û
(n)
k+1 are sampled from q, ie

û
(n)
k+1 = m

(n)
k+1 + ζ

(n)
k+1 = (I − KH)ψ(u

(n)
k ) + Kyk+1 + ζ

(n)
k+1

where ζ
(n)
k+1 ∼ N(0,C ).

Since we cannot compute Z , approximate the weights by

w
(n),∗
k+1 = exp

(
−1

2
|yk+1 − Hψ(u

(n)
k )|2S

)
, w

(n)
k+1 =

w
(n),∗
k+1∑N

n=1 w
(n),∗
k+1
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The optimal particle filter
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Propagate the particles

x

y

obs

û
(n)
k+1 = (I − KH)ψ(u

(n)
k ) + Kyk+1 + ζ

(n)
k+1 , ζ

(n)
k+1 ∼ N(0,C ) i.i.d.
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Weight the particles using the observation

x

y

obs

w
(n),∗
k+1 = exp

(
−1

2
|yk+1 − Hψ(u

(n)
k )|2S

)
, w

(n)
k+1 =

w
(n),∗
k+1∑N

n=1 w
(n),∗
k+1
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Resample the weighted particles

x

y

obs

×2

P(uk+1|Y k+1) ≈
N∑

n=1

1

N
δ(uk+1 − u

(n)
k+1)
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The optimal particle filter

We represent the optimal particle filter as a random dynamical system

û
(n)
k+1 = (I − KH)ψ(u

(n)
k ) + Kyk+1 + ζ

(n)
k , ζ

(n)
k ∼ N(0,C ) i.i.d.

u
(n)
k+1 =

N∑
m=1

1
[x

(m)
k+1,x

(m+1)
k+1 ]

(r
(n)
k+1)û

(m)
k+1 .

where r
(n)
k+1 is uniformly distributed on [0, 1] and

x
(m+1)
k+1 = x

(m)
k+1 + w

(m)
k+1

ie. pick û
(m)
k+1 with probability w

(m)
k+1.

Note that Uk = (u
(1)
k , . . . , u

(n)
k ) is a Markov chain.
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What do we know about particle
filters?
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Theory for filtering distributions

The true posterior (filtering distribution) µk is known to be accurate:

lim sup
k→∞

E‖mk − uk‖2 = O(obs noise)

where uk is the trajectory producing Y k , mk = E(uk |Y k) and we take E
over all randomness.

And conditionally ergodic: If µ′k , µ
′′
k are two copies of the filtering

distribution with µ′0 = δu′0 and µ′′0 = δu′′0 then

dTV (µ′k , µ
′′
k) = O(δk)

as k →∞, where δ ∈ (0, 1).

David Kelly (CIMS) Data assimilation November 29, 2016 20 / 34



Consistency of particle filters

Most particle filters (including the standard and optimal PFs) are
consistent:

The empirical measure converges to the true filtering distribution and
moreover

d(µNk , µk) ≤ Cd ,kN
−1/2

But the constant Cd ,k scales badly with dimension.

eg. (Bickel et al) For a class of linear models, if d →∞ then we must
haveN ≥ C exp(d) for consistency.
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Works better than consistency theory suggests

Figure: Lorenz equations, only observing x variable. Particle filter with N = 5
exhibits accuracy and forgets its initialization.
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Theory for optimal particle filter
with fixed N .
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Accuracy

Assumption The map (I − KH)ψ(·) is a contraction wrt some norm ‖ · ‖.
(generalization of observability to nonlinear systems)

Theorem (K, Stuart 16)

lim sup
k→∞

E max
n
‖u(n)

k − uk‖2 = O(obs noise)

for each n = 1, . . . ,N.

David Kelly (CIMS) Data assimilation November 29, 2016 24 / 34



Accuracy Proof

Let e
(n)
k = u

(n)
k − uk and ê

(n)
k = û

(n)
k − uk then

ê
(n)
k+1 = (I − KH)ψ(u

(n)
k ) + Kyk+1 + ζ

(n)
k+1 − (ψ(uk) + ηk)

= (I − KH)(ψ(u
(n)
k )− ψ(uk)) + K (yk+1 − Hψ(uk))

+ (ζk+1 − ηk)

= (I − KH)(ψ(u
(n)
k )− ψ(uk)) + (Kξk+1 + ζ

(n)
k+1 − ηk)

Note that all the noises are independent, and by the contraction

assumption ‖(I − KH)(ψ(u
(n)
k )− ψ(uk))‖ ≤ α‖e(n)

k ‖ for some α ∈ (0, 1).
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Accuracy Proof

And moreover

e
(n)
k+1 =

N∑
m=1

1
[x

(m)
k+1,x

(m+1)
k+1 )

(r
(n)
k+1)ê

(m)
k+1

and note that exactly one of the terms in the sum is non-zero.

It follows easily that maxn ‖e(n)
k+1‖ ≤ maxn ‖ê(n)

k+1‖.

From the contraction assumption and independence it follows that

E max
n
‖e(n)

k+1‖
2 ≤ αE max

n
‖e(n)

k ‖
2 + β

for α ∈ (0, 1) and β > 0. Result follows by Gronwall.
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Conditional Ergodicity: Preliminaries

Let U ′k = (u
(1)′

k , . . . , u
(N)′

k ) and U ′′k = (u
(1)′′

k , . . . , u
(N)′′

k ) be two optimal
PFs driven by the same observations Y k , but with different initializations
u′0 and u′′0 respectively.

Recall that these are Markov chains, and denote their transition kernels by
pk+1(Uk , ·). Denote the law of Uk by pk(U0, ·)
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Conditional Ergodicity: The result

Theorem (K, Stuart 16)

The optimal PF is conditionally ergodic in the sense that

dTV

(
pk(U ′0, ·), pk(U ′′0, ·)

)
= O(δk)

as k →∞, for δ ∈ (0, 1).

ie. The optimal PF forgets its initialization (in a weak sense) exponentially
quickly.
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Proof
A coupling (U ′k ,U

′′
k) is any joint distribution whose the marginals of the

law of (U ′k ,U
′′
k) are pk(U ′0, ·) and pk(U ′′0, ·) respectively.

We consider the coupling (U ′k ,U
′′
k) defined in such a way that U ′k = U ′′k

for all k ≥ k∗ where k∗ is the random time k∗ = inf{k : U ′k = U ′′k}.

Let Ak be the event that k∗ > k .

U ′k U ′′k

U ′k = U ′′k
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Proof

By definition of the TV metric

dTV (pk(U ′0, ·), pk(U ′′0, ·))

=
1

2
sup
|f |≤1

∣∣Ef (U ′k)− Ef (U ′′k)
∣∣

=
1

2
sup
|f |≤1

∣∣∣E(f (U ′k)− Ef (U ′′k))IAk
+ E(f (U ′k)− Ef (U ′′k))IAc

k

∣∣∣
=

1

2
sup
|f |≤1

∣∣E(f (U ′k)− Ef (U ′′k))IAk

∣∣ ≤ P(Ak)

So we want to construct a coupling (U ′k ,U
′′
k) that couples quickly

(probability of not yet coupling decays rapidly).
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Proof

Assume first that we have a minorization condition for the kernel pk(U, ·):
there exists a probability measure ν and constant εk ∈ (0, 1) such that

pk(U, ·) ≥ εkν(·)

for all U and each k.

Quite easy to verify that (given some natural assumptions on ψ) the
optimal PF satisfies this condition with Gaussian ν and εk depending on
d ,N,Y k .
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Proof

The minorization condition allows us to build a Markov chain Ũk with
kernel

p̃k(U, ·) = (1− εk)−1(pk(U, ·)− εkν(·))

We can now represent the Markov chain Uk in the following split chain
sense:

Uk =

{
Ũk with probability 1− εk
ξ with probability εk

where ξ ∼ ν(·).

On can easily check (for instance by evaluating Ef (Uk) ) that this does
indeed yield a copy of the optimal PF Markov chain.
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We define the coupling (U ′k ,U
′′
k) using independent copies of Ũk but the

same εk -coin and identical copies of ξ in the split-chain representation.

When the coin lands (1− εk), the two chains evolve independently, but as
soon as the coin lands εk we have U ′k = U ′′k .

It follows that

dTV (pk(u′0, ·), pk(u′′0, ·)) ≤ P(Ak) = Πk
i=1(1− εi )

(After filling in a few details)
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All my slides are on my website (www.dtbkelly.com) Thank you!
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