Ergodicity and Accuracy in Optimal Particle Filters

David Kelly and Andrew Stuart

Courant Institute New York University New York NY www.dtbkelly.com

November 29, 2016

Mathsfest 2016, Canberra, Australia

David Kelly (CIMS)

What is data assimilation?

What is data assimilation?

Suppose u satisfies an evolution equation

$$\frac{d\,\mathbf{u}}{dt}=F(\mathbf{u})$$

with some **unknown** initial condition $u_0 \sim \mu_0$.

There is a true trajectory of u that is producing *partial*, *noisy* observations at times t = h, 2h, ..., nh:

$$\mathbf{y}_n = H\mathbf{u}_n + \boldsymbol{\xi}_n$$

where *H* is a linear operator (think low rank projection), $u_n = u(nh)$, and $\xi_n \sim N(0, \Gamma)$ iid.

The aim of **data assimilation** is to characterize the conditional distribution of u_n given the observations $\{y_1, \ldots, y_n\}$

David Kelly (CIMS)

The conditional distribution is updated via the **filtering cycle**.

David Kelly (CIMS)

Data assimilation

November 29, 2016 4 / 34

Illustration (Initialization)

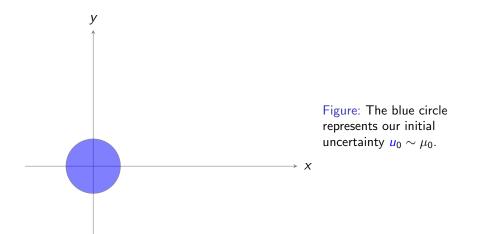


Illustration (Forecast step)

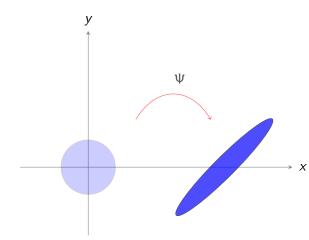


Figure: Apply the time h flow map Ψ . This produces a new probability measure which is our forecasted estimate of u_1 . This is called the forecast step.

Illustration (Make an observation)

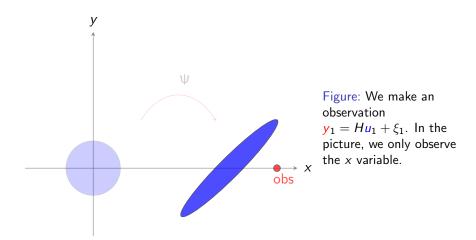


Illustration (Analysis step)

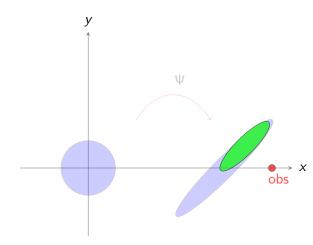


Figure: Using Bayes formula we compute the conditional distribution of $u_1 | y_1$. This new measure (called the posterior) is the new estimate of u_1 . The uncertainty of the estimate is reduced by incorporating the observation. The forecast distribution steers the update from the observation.

Bayes' formula filtering update

Let $\mathbf{Y}_n = \{\mathbf{y}_1, \dots, \mathbf{y}_n\}$. We want to compute the conditional density $\mathbf{P}(u_{n+1}|\mathbf{Y}_{n+1})$, using $\mathbf{P}(u_n|\mathbf{Y}_n)$ and y_{n+1} .

By Bayes' formula, we have

$$\mathsf{P}(u_{n+1}|\mathbf{Y}_{n+1}) = \mathsf{P}(u_{n+1}|\mathbf{Y}_n, \mathbf{y}_{n+1}) \propto \mathsf{P}(\mathbf{y}_{n+1}|u_{n+1})\mathsf{P}(u_{n+1}|\mathbf{Y}_n)$$

But we need to compute the integral

$$\mathbf{P}(u_{n+1}|\mathbf{Y}_n) = \int \mathbf{P}(u_{n+1}|\mathbf{Y}_n, u_n) \mathbf{P}(u_n|\mathbf{Y}_n) du_n .$$

In general there are **no closed formulas** for the Bayesian densities. One typically approximates the densities with a sampling procedure.

Applications can be very high dimensional (eg. robotics, numerical weather prediction) which makes the sampling problem highly non-trivial. Particle filters approximate the posterior empirically

$$\mathbf{P}(\boldsymbol{u}_k|\boldsymbol{Y}_k) \approx \sum_{n=1}^N \frac{1}{N} \delta(\boldsymbol{u}_k - \boldsymbol{u}_k^{(n)})$$

the particles $\{u_k^{(n)}\}_{n=1}^N$ can be updated in different ways, giving rise to different particle filters.

Model Assumption

We always assume a conditionally Gaussian model

$$u_{k+1} = \psi(u_k) + \eta_k$$
, $\eta_k \sim N(0, \Sigma)$ i.i.d.

where ψ is deterministic, with observations

$$y_{k+1} = Hu_{k+1} + \xi_{k+1}$$
, $\xi_k \sim N(0, \Gamma)$ i.i.d.

This facilitates the implementation and theory for particles filters and is a realistic assumption for many practical problems.

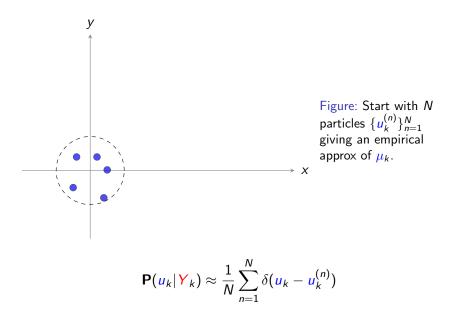
We denote the posterior, with density $P(u_k|Y_K)$, by μ_k and denote the particle filter approximations by μ_k^N .

The standard particle filter

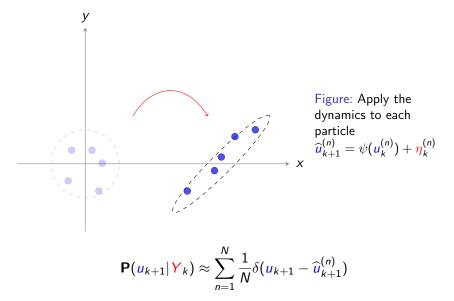
David Kelly (CIMS)

Data assimilation

November 29, 2016 10 / 34

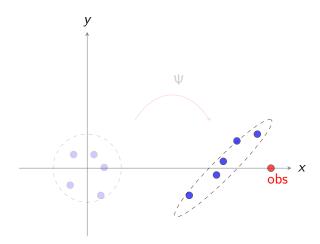


Apply dynamics to particles



David Kelly (CIMS)

Make an observation



David Kelly (CIMS)

November 29, 2016 10 / 34

Weight the forecast particles

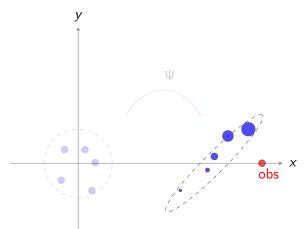
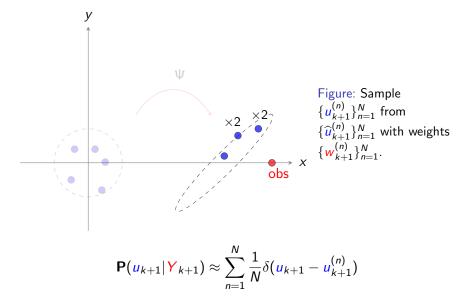


Figure: Assign weights $w_{k+1}^{(n)}$ to the particles, closer agreement with obs = larger weight. Weights are normalized $\sum_{n=1}^{N} w_{k+1}^{(n)} = 1$.

David Kelly (CIMS)

Re-sample the weighted particles



David Kelly (CIMS)

The standard particle filter

We represent the standard particle filter as a random dynamical system

$$\begin{aligned} \widehat{u}_{k+1}^{(n)} &= \psi(u_k^{(n)}) + \eta_k^{(n)} \\ u_{k+1}^{(n)} &= \sum_{m=1}^N \mathbf{1}_{[x_{k+1}^{(m)}, x_{k+1}^{(m+1)})}(r_k^{(m)}) \widehat{u}_k^{(m)} \end{aligned}$$

where $r_{k+1}^{(n)}$ is uniformly distributed on [0, 1] and

$$x_{k+1}^{(m+1)} = x_{k+1}^{(m)} + w_{k+1}^{(m)} \quad , \quad x_{k+1}^{(1)} = 0$$
ie. pick $\widehat{u}_{k+1}^{(m)}$ with probability $w_{k+1}^{(m)}$.

The motivation: importance sampling

If p(x) is a probability density, the empirical approximation of p is given by

$$p(x) \approx \frac{1}{N} \sum_{n=1}^{N} \delta(x - x^{(n)})$$

where $x^{(n)}$ are samples from p.

When p is difficult to sample from, we can instead use the importance sampling approximation

$$p(x) \approx \frac{1}{N} \sum_{n=1}^{N} \frac{p(\widehat{x}^{(n)})}{q(\widehat{x}^{(n)})} \delta(x - \widehat{x}^{(n)})$$

where $\widehat{x}^{(n)}$ are samples from a different probability density q.

David Kelly (CIMS)

The motivation: standard particle filter

We have samples $\{u_k^{(n)}\}_{n=1}^N$ from $P(u_k|Y_k)$ that we wish to update into samples from $P(u_{k+1}|Y_{k+1})$.

Note that $u_k | Y_k$ is a Markov chain with kernel

$$p_k(u_k, du_{k+1}) = Z^{-1} \mathbf{P}(\mathbf{y}_{k+1} | u_{k+1}) \mathbf{P}(u_{k+1} | u_k)$$

If we could draw $u_{k+1}^{(n)}$ from $p_k(u_k^{(n)}, du_{k+1})$ then we would have $u_{k+1}^{(n)} \sim \mathbf{P}(u_{k+1}|Y_{k+1}).$

The motivation: standard particle filter

It is too difficult to sample directly, so we instead draw $\widehat{u}_{k+1}^{(n)}$ from $q(u_{k+1}) = \mathbf{P}(u_{k+1}|u_k^{(n)})$ and get the importance sampling approximation

$$\mathbf{P}(\boldsymbol{u}_{k+1}|\boldsymbol{Y}_{k+1}) \approx \frac{1}{N} \sum_{n=1}^{N} Z^{-1} \mathbf{P}(\boldsymbol{y}_{k+1}|\widehat{\boldsymbol{u}}_{k+1}^{(n)}) \delta(\boldsymbol{u}_{k+1} - \widehat{\boldsymbol{u}}_{k+1}^{(n)})$$

Since we cannot compute Z, approximate the weights by

$$\begin{split} \mathbf{w}_{k+1}^{(n),*} &= \mathbf{P}(\mathbf{y}_{k+1} | \widehat{u}_{k+1}^{(n)}) \propto \exp\left(-\frac{1}{2} |\mathbf{y}_{k+1} - H\widehat{u}_{k+1}^{(n)}|_{\Gamma}^{2}\right) \\ w_{k+1}^{(n)} &= \frac{\mathbf{w}_{k+1}^{(n),*}}{\sum_{n=1}^{N} \mathbf{w}_{k+1}^{(n),*}} \end{split}$$

Notation: $|\cdot|_A = \langle A^{-1} \cdot, \cdot \rangle$

A different approach

Another approach

$$p_{k}(\boldsymbol{u}_{k}^{(n)}, d\boldsymbol{u}_{k+1}) \\ \propto \mathbf{P}(\boldsymbol{y}_{k+1}|\boldsymbol{u}_{k+1})\mathbf{P}(\boldsymbol{u}_{k+1}|\boldsymbol{u}_{k}^{(n)}) \\ = Z_{\Gamma}^{-1} \exp\left(-\frac{1}{2}|\boldsymbol{y}_{k+1} - H\boldsymbol{u}_{k+1}|_{\Gamma}^{2}\right) Z_{\Sigma}^{-1} \exp\left(-\frac{1}{2}|\boldsymbol{u}_{k+1} - \psi(\boldsymbol{u}_{k}^{(n)})|_{\Sigma}^{2}\right) \\ = Z_{S}^{-1} \exp\left(-\frac{1}{2}|\boldsymbol{y}_{k+1} - H\psi(\boldsymbol{u}_{k}^{(n)})|_{S}^{2}\right) Z_{C}^{-1} \exp\left(-\frac{1}{2}|\boldsymbol{u}_{k+1} - \boldsymbol{m}_{k+1}^{(n)}|_{C}^{2}\right)$$

by product of Gaussian densities formulae , and

$$C^{-1} = \Sigma^{-1} + H^{T} \Gamma^{-1} H$$

$$S = H \Sigma H^{T} + \Gamma$$

$$m_{k+1}^{(n)} = C(\Sigma^{-1} \psi(u_{k}^{(n)}) + H^{T} \Gamma^{-1} y_{k+1}) = (I - KH) \psi(u_{k}) + K y_{k+1}$$

If $q(u_{k+1}) = Z_C^{-1} \exp\left(-\frac{1}{2}|u_{k+1} - m_{k+1}^{(n)}|_C^2\right)$ then the importance sampling approximation is given by

$$\mathbf{P}(u_{k+1}|\mathbf{Y}_{k+1}) \approx \frac{1}{N} \sum_{n=1}^{N} Z^{-1} \exp\left(-\frac{1}{2}|\mathbf{y}_{k+1} - H\psi(u_{k}^{(n)})|_{S}^{2}\right) \delta(u_{k+1} - \widehat{u}_{k+1}^{(n)})$$

where $\hat{u}_{k+1}^{(n)}$ are sampled from q, ie

$$\begin{aligned} \widehat{u}_{k+1}^{(n)} &= m_{k+1}^{(n)} + \zeta_{k+1}^{(n)} = (I - KH)\psi(u_k^{(n)}) + Ky_{k+1} + \zeta_{k+1}^{(n)} \end{aligned}$$
where $\zeta_{k+1}^{(n)} \sim N(0, C)$.

Since we cannot compute Z, approximate the weights by

$$\mathbf{w}_{k+1}^{(n),*} = \exp\left(-\frac{1}{2}|\mathbf{y}_{k+1} - H\psi(\mathbf{u}_{k}^{(n)})|_{S}^{2}\right) \quad , \quad \mathbf{w}_{k+1}^{(n)} = \frac{\mathbf{w}_{k+1}^{(n),*}}{\sum_{n=1}^{N} \mathbf{w}_{k+1}^{(n),*}}$$

David Kelly (CIMS)

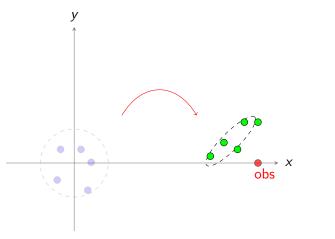
The optimal particle filter

David Kelly (CIMS)

Data assimilation

November 29, 2016 17 / 34

Propagate the particles



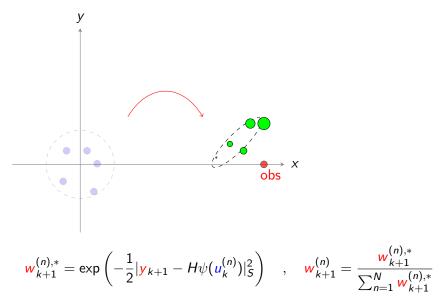
$$\widehat{u}_{k+1}^{(n)} = (I - KH)\psi(u_k^{(n)}) + K_{y_{k+1}} + \zeta_{k+1}^{(n)} , \quad \zeta_{k+1}^{(n)} \sim N(0, C) \text{ i.i.d.}$$

David Kelly (CIMS)

Data assimilation

November 29, 2016 17 / 34

Weight the particles using the observation

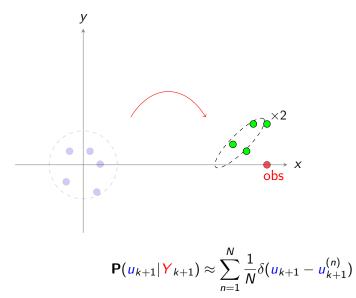


David Kelly (CIMS)

Data assimilation

November 29, 2016 17 / 34

Resample the weighted particles



David Kelly (CIMS)

The optimal particle filter

We represent the optimal particle filter as a random dynamical system

$$\begin{aligned} \widehat{u}_{k+1}^{(n)} &= (I - KH)\psi(\underline{u}_{k}^{(n)}) + K\underline{y}_{k+1} + \zeta_{k}^{(n)} \quad , \quad \zeta_{k}^{(n)} \sim N(0, C) \text{ i.i.d.} \\ u_{k+1}^{(n)} &= \sum_{m=1}^{N} \mathbf{1}_{[x_{k+1}^{(m)}, x_{k+1}^{(m+1)}]}(r_{k+1}^{(n)})\widehat{u}_{k+1}^{(m)} . \end{aligned}$$

where $r_{k+1}^{(n)}$ is uniformly distributed on [0, 1] and

$$x_{k+1}^{(m+1)} = x_{k+1}^{(m)} + w_{k+1}^{(m)}$$

ie. pick $\widehat{u}_{k+1}^{(m)}$ with probability $w_{k+1}^{(m)}$.

Note that $U_k = (u_k^{(1)}, \dots, u_k^{(n)})$ is a Markov chain.

What do we know about particle filters?

David Kelly (CIMS)

Data assimilation

November 29, 2016 19 / 34

Theory for filtering distributions

The true posterior (filtering distribution) μ_k is known to be **accurate**:

$$\limsup_{k\to\infty} \mathbf{E} \|\boldsymbol{m}_k - \boldsymbol{u}_k\|^2 = O(\text{obs noise})$$

where u_k is the trajectory producing Y_k , $m_k = E(u_k | Y_k)$ and we take E over all randomness.

And **conditionally ergodic**: If μ'_k, μ''_k are two copies of the filtering distribution with $\mu'_0 = \delta_{u'_0}$ and $\mu''_0 = \delta_{u''_0}$ then

$$d_{TV}(\mu'_k,\mu''_k)=O(\delta^k)$$

as $k \to \infty$, where $\delta \in (0,1)$.

Consistency of particle filters

Most particle filters (including the standard and optimal PFs) are **consistent**:

The empirical measure converges to the true filtering distribution and moreover

$$d(\mu_k^N,\mu_k) \leq C_{d,k}N^{-1/2}$$

But the constant $C_{d,k}$ scales badly with dimension.

eg. (Bickel et al) For a class of linear models, if $d \to \infty$ then we must have $N \ge C \exp(d)$ for consistency.

Works better than consistency theory suggests

Figure: Lorenz equations, only observing x variable. Particle filter with N = 5 exhibits accuracy and forgets its initialization.

David Kelly (CIMS)

Theory for optimal particle filter with fixed *N*.

David Kelly (CIMS)

Data assimilation

November 29, 2016 23 / 34

Accuracy

Assumption The map $(I - KH)\psi(\cdot)$ is a contraction wrt some norm $\|\cdot\|$. (generalization of observability to nonlinear systems)

Theorem (K, Stuart 16) $\limsup_{k \to \infty} \mathbf{E} \max_{n} \|u_{k}^{(n)} - u_{k}\|^{2} = O(obs \ noise)$ for each n = 1, ..., N.

Accuracy Proof

Let
$$e_k^{(n)} = u_k^{(n)} - u_k$$
 and $\hat{e}_k^{(n)} = \hat{u}_k^{(n)} - u_k$ then
 $\hat{e}_{k+1}^{(n)} = (I - KH)\psi(u_k^{(n)}) + Ky_{k+1} + \zeta_{k+1}^{(n)} - (\psi(u_k) + \eta_k)$
 $= (I - KH)(\psi(u_k^{(n)}) - \psi(u_k)) + K(y_{k+1} - H\psi(u_k))$
 $+ (\zeta_{k+1} - \eta_k)$
 $= (I - KH)(\psi(u_k^{(n)}) - \psi(u_k)) + (K\xi_{k+1} + \zeta_{k+1}^{(n)} - \eta_k)$

Note that all the noises are independent, and by the contraction assumption $\|(I - KH)(\psi(u_k^{(n)}) - \psi(u_k))\| \le \alpha \|e_k^{(n)}\|$ for some $\alpha \in (0, 1)$.

Accuracy Proof

And moreover

$$e_{k+1}^{(n)} = \sum_{m=1}^{N} \mathbb{1}_{[x_{k+1}^{(m)}, x_{k+1}^{(m+1)}]}(r_{k+1}^{(n)}) \hat{e}_{k+1}^{(m)}$$

and note that exactly one of the terms in the sum is non-zero.

It follows easily that
$$\max_n \|e_{k+1}^{(n)}\| \le \max_n \|\widehat{e}_{k+1}^{(n)}\|$$
.

From the contraction assumption and independence it follows that

$$\mathbf{E}\max_{n} \|\boldsymbol{e}_{k+1}^{(n)}\|^{2} \leq \alpha \mathbf{E}\max_{n} \|\boldsymbol{e}_{k}^{(n)}\|^{2} + \beta$$

for $\alpha \in (0, 1)$ and $\beta > 0$. Result follows by Gronwall.

Conditional Ergodicity: Preliminaries

Let $U'_k = (u_k^{(1)'}, \ldots, u_k^{(N)'})$ and $U''_k = (u_k^{(1)''}, \ldots, u_k^{(N)''})$ be two optimal PFs driven by the same observations Y_k , but with different initializations u'_0 and u''_0 respectively.

Recall that these are Markov chains, and denote their transition kernels by $p_{k+1}(U_k, \cdot)$. Denote the law of U_k by $p^k(U_0, \cdot)$

Conditional Ergodicity: The result

Theorem (K, Stuart 16)

The optimal PF is conditionally ergodic in the sense that

$$d_{TV}\left(p^k(U'_0,\cdot),p^k(U''_0,\cdot)
ight)=O(\delta^k)$$

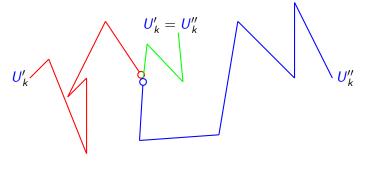
as $k \to \infty$, for $\delta \in (0,1)$.

ie. The optimal PF forgets its initialization (in a weak sense) exponentially quickly.

A coupling (U'_k, U''_k) is any joint distribution whose the marginals of the law of (U'_k, U''_k) are $p^k(U'_0, \cdot)$ and $p^k(U''_0, \cdot)$ respectively.

We consider the coupling (U'_k, U''_k) defined in such a way that $U'_k = U''_k$ for all $k \ge k^*$ where k^* is the random time $k^* = \inf\{k : U'_k = U''_k\}$.

Let A_k be the event that $k^* > k$.



By definition of the TV metric

$$\begin{aligned} d_{TV}(p^{k}(U'_{0},\cdot),p^{k}(U''_{0},\cdot)) \\ &= \frac{1}{2} \sup_{|f| \le 1} \left| \mathsf{E}f(U'_{k}) - \mathsf{E}f(U''_{k}) \right| \\ &= \frac{1}{2} \sup_{|f| \le 1} \left| \mathsf{E}(f(U'_{k}) - \mathsf{E}f(U''_{k}))I_{A_{k}} + \mathsf{E}(f(U'_{k}) - \mathsf{E}f(U''_{k}))I_{A_{k}^{c}} \right| \\ &= \frac{1}{2} \sup_{|f| \le 1} \left| \mathsf{E}(f(U'_{k}) - \mathsf{E}f(U''_{k}))I_{A_{k}} \right| \le \mathsf{P}(A_{k}) \end{aligned}$$

So we want to construct a coupling (U'_k, U''_k) that couples quickly (probability of not yet coupling decays rapidly).

Assume first that we have a minorization condition for the kernel $p_k(U, \cdot)$: there exists a probability measure ν and constant $\varepsilon_k \in (0, 1)$ such that

$$p_k(U,\cdot) \geq \varepsilon_k \nu(\cdot)$$

for all U and each k.

Quite easy to verify that (given some natural assumptions on ψ) the optimal PF satisfies this condition with Gaussian ν and ε_k depending on d, N, Y_k .

The minorization condition allows us to build a Markov chain $\tilde{\boldsymbol{U}}_k$ with kernel

$$\tilde{p}_k(\boldsymbol{U},\cdot) = (1-\varepsilon_k)^{-1}(p_k(\boldsymbol{U},\cdot)-\varepsilon_k\nu(\cdot))$$

We can now represent the Markov chain U_k in the following split chain sense:

$$U_k = \begin{cases} \tilde{U}_k & \text{with probability } 1 - \varepsilon_k \\ \xi & \text{with probability } \varepsilon_k \end{cases}$$

where $\xi \sim \nu(\cdot)$.

On can easily check (for instance by evaluating $\mathbf{E}f(U_k)$) that this does indeed yield a copy of the optimal PF Markov chain.

We define **the coupling** (U'_k, U''_k) using independent copies of \tilde{U}_k but the same ε_k -coin and identical copies of ξ in the split-chain representation.

When the coin lands $(1 - \varepsilon_k)$, the two chains evolve independently, but as soon as the coin lands ε_k we have $U'_k = U''_k$.

It follows that

$$d_{TV}(p^k(u'_0,\cdot),p^k(u''_0,\cdot)) \leq \mathbf{P}(\mathbf{A}_k) = \prod_{i=1}^k (1-\varepsilon_i)$$

(After filling in a few details)

References

D. Kelly & A. Stuart. Ergodicity and Accuracy of Optimal Particle Filters for Bayesian Data Assimilation. **arXiv** (2016).

All my slides are on my website (www.dtbkelly.com) Thank you!