David Kelly Martin Hairer

Mathematics Institute
University of Warwick
Coventry UK CV4 7TAL

dtbkelly@gmail.com

November 3, 2013

Multiscale Systems, Warwick



Let X. satisfy the SDE
1
dX.(t) = gb(XE/s)dt + o(X:/e)dB(t)

with b, o being periodic C? functions and X taking values on S*.

Eg. Take 0 =1, b= —V’(:). Then the SDE described a gradient flow
over the highly oscillatory potential V(- /).



A Classic Result

Let X satisfy the SDE
1
dX.(t) = gb(XS/a)dt + o(X:/e)dB(t)

with b, o being periodic C? functions and X taking values on S*.

Eg. Take 0 =1, b= —V'(-). Then the SDE described a gradient flow
over the highly oscillatory potential V/(-/¢).

If o is strictly positive and [ b/c?dx = 0 then
X. = cX

where X is a BM and ¢ > 0 is some constant determined by b and o.
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If we denote the generator of X as
1 1, 5
L. = gb(x/e)ax + 50 (x/e)0s

where x € ST. We can use the classic result to homogenize PDEs

Ot = Leoug — Ot = ca)%u
u:(0) =g u(0) =g

since u-(t) = E[g(X-(1))].



Homogenization of PDEs

If we denote the generator of X. as

L— éb(x/a)@x + %02(x/a)a§

where x € S*. We can use the classic result to homogenize PDEs

Ot = Lou, — o = c8)2<u
u:(0) =g u(0) =g
since u.(t) = E[g(X:(t))]. We can also add a forcing term

Oty = Leu, + f — 8tu:c8)2(u+f
HORY u(0) =
since u-(t) = E[g(Xz(t))] + fotE[f(XE(t —s),s)]ds. This works provided
f = f(x,t) is nice enough.
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Homogenization of SPDEs

We try to find a limit to
du.(t) = Louc(t)dt + QY2dW(t)
u:(0) =0
daw

where T is space-time white noise and QY2 s a positive, bounded linear
operator with QY/2etkx = e’ with A\, > 0. Hence, we can also write

duc(t) = Leuc(t)dt + > Mee™ dW(t)
keZ

where W) are complex BMs with W), = W*, and otherwise independent.
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If A\x — 0 and u satisfies

du(t) = cd?u(t)dt + QY2dW/(t) ,

then
E sup [uc(t) - U(t)lli,_s —0 ase—0,

for any s > 3/4.
» If we know A\ < k~ for some o > 0 then we can improve to

s> (3/4—3a/2)NO.



Second Result

Theorem (Bounded Q)

If \ek = X\ and 0 satisfies

di(t) = co2a(t)de + Y (|Ael? + N2([lo]2 — 1)) Wi (¢)
k

for some new sequence of BMs W and p satisfies L*p = 0 with (p,1) =

. A~ dist
Then there exists a sequence of processes Ui, = u. such that

E sup ||oe(t) — &(t)||%-s -0 ase—0,
te[0,T]

for any s > 1.

> eg. For STWN, dit = cd2iidt + ||p||d W
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Sketch of Proof

We use the following interpolation strategy

Ellu(t) = u()lf-« = Y Elus(t) — u(t),e™) (1 + m*)~°

|m|<e—#8

+ D Elue(t) — u(t), ™)1+ m?)

|m|>~5

for some 8 € (0,1). For the high modes

Y Elue(t)—u(e), &™) P(1+m?) 7 < ¥ (Bllus(2)]? + Eu(e)]?) -

|m|>e=#

If E||u.(t)||> doesn’t blow up too much, then we need only worry about
the low modes.
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We have a mild solution given by
t .
ue(t) = 3 / S.(t — 5)e ™ dWi(s)
k 0

where S, is the semigroup generated by L..



Sketch of Proof

We have a mild solution given by

u = t — s)e™ s
(1) ijxk/O S-(t — 5)e™ W (s)

where S is the semigroup generated by L..
We take |m| < e7# and try to approximate

Ua, /mx Z/\k/ 5 o ) ikx’eimx>de(s)

This can be approximated using (a quantitative version of) our classical
result

Sg(t - S)Gikx — eikxsz(tfs) + O(Ek)
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We have that

t
<Ua(t), elmX> — )\m/ e m 2(t—s) dW + Z)\k/ 5)7e’mX>de
0

(™) +§k)k/0 (RE(t — 5), &™) dWi(s)

Estimates for R get bad when k ~ 71, so this only works if A, < k=12,
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We have that

t
<Ua(t), elmX> — )\m/ e m 2(t—s) dW + Z)\k/ 5)7e’mX>de
0

(™) +§k)k/0 (RE(t — 5), &™) dWi(s)

Estimates for R get bad when k ~ 71, so this only works if A, < k=12,
A better approach is to use the adjoint semigroup

<Ua t) eImx Z)‘k/ IkX 5 ( ) imx)de(s)

With the adjoint classical result

S*(t — s)e™ = p(x/e)e™ M (t=5) L O(em)
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We have

(Us(t), eimx> _ Z)\k(eikx,p(x/f:‘)e"mx> /t e_m2(t—s)de(s) +R
Kk 0

Since ¢! € N, only terms with k = m + p/e for any p € Z will remain.
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We have

(Us(t), eimx> _ Z)\k(eikx,p(x/f:‘)e"mx> /t e_m2(t—s)de(s) +R

K 0

Since e 7! € N, only terms with k = m + p/¢ for any p € Z will remain.
We have

t

ipx —m?(t—s

Z)‘m+p/e<pvep >/0 et )dWm-l-p/e(s)
p

and isolating the first term

t i t
A / e—mZ(t_s)dWm(s) + Z >\m+p/5 <P, eIPX> / e_m2(t—5)dWm+p/€(S)
0 p#0 0

If Ax — 0, this proves the result for @ compact.
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If \x — X # 0, then these extra terms no longer vanish. We have that

t
ipx —m?(t—
§ >‘m+p/s<P7ep >/0 et s)dWerp/s(s)
p

is equal in distribution to

t

1/2
(ZAm+p/a|2r<p, e"PX>!2> / e dWin(s)
P

0

t
T 1/2 (b)) ih
S (IAml? + RR(0) — 1)V /0 e () g W (s)

This proves the result for Q@ bounded.
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If e and p are (respectively) the invariant measures of the original and
limiting SPDEs then we can show that

e > ase—0

under the H~° Wasserstein metric.



Similar results hold for all SPDEs of the form

dus(t) = Leus(t)dt + Z qk(X/E)eikxde(t)
k

for C1 periodic functions gi. This is the structure possessed by noise that
is cell-translation invariant. i.e. The law of the noise is invariant if you
shift it by a cell.



Extensions

Similar results hold for all SPDEs of the form

du:(t) = Leuc(t)dt + > qu(x/e)e™ dW(t)
k

for C! periodic functions gi. This is the structure possessed by noise that
is cell-translation invariant. i.e. The law of the noise is invariant if you
shift it by a cell.

Thank You!
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