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A Classic Result

Let Xε satisfy the SDE

dXε(t) =
1

ε
b(Xε/ε)dt + σ(Xε/ε)dB(t)

with b, σ being periodic C2 functions and Xε taking values on S1.

Eg. Take σ = 1, b = −V ′(·). Then the SDE described a gradient flow
over the highly oscillatory potential V (·/ε).

If σ is strictly positive and
∫

b/σ2dx = 0 then

Xε ⇒ cX̄

where X̄ is a BM and c > 0 is some constant determined by b and σ.
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Homogenization of PDEs

If we denote the generator of Xε as

Lε =
1

ε
b(x/ε)∂x +

1

2
σ2(x/ε)∂2x

where x ∈ S1. We can use the classic result to homogenize PDEs

∂tuε = Lεuε → ∂tu = c∂2xu

uε(0) = g u(0) = g

since uε(t) = E[g(Xε(t))].

We can also add a forcing term

∂tuε = Lεuε + f → ∂tu = c∂2xu + f

uε(0) = g u(0) = g

since uε(t) = E[g(Xε(t))] +
∫ t
0 E[f (Xε(t − s), s)]ds. This works provided

f = f (x , t) is nice enough.
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Homogenization of SPDEs

We try to find a limit to

duε(t) = Lεuε(t)dt + Q1/2dW (t)

uε(0) = 0

where dW
dt is space-time white noise and Q1/2 is a positive, bounded linear

operator with Q1/2e ikx = λke ikx with λk ≥ 0. Hence, we can also write

duε(t) = Lεuε(t)dt +
∑
k∈Z

λke ikxdWk(t)

where Wk are complex BMs with Wk = W ∗
−k and otherwise independent.
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First Result

Theorem (Compact Q)

If λk → 0 and u satisfies

du(t) = c∂2xu(t)dt + Q1/2dW (t) ,

then
E sup

t∈[0,T ]
‖uε(t)− u(t)‖2H−s → 0 as ε→ 0,

for any s > 3/4.

I If we know λk � k−α for some α > 0 then we can improve to
s > (3/4− 3α/2) ∧ 0.
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Second Result

Theorem (Bounded Q)

If λk → λ̄ and û satisfies

dû(t) = c∂2x û(t)dt +
∑
k

(
|λk |2 + |λ̄|2(‖ρ‖2 − 1)

)1/2
e ikxdŴk(t)

for some new sequence of BMs Ŵk and ρ satisfies L∗ρ = 0 with 〈ρ, 1〉 = 1.

Then there exists a sequence of processes ûε
dist
= uε such that

E sup
t∈[0,T ]

‖ûε(t)− û(t)‖2H−s → 0 as ε→ 0,

for any s > 1.

I eg. For STWN, dû = c∂2x ûdt + ‖ρ‖dŴ
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Sketch of Proof

We use the following interpolation strategy

E‖uε(t)− u(t)‖2H−s =
∑

|m|<ε−β

E|〈uε(t)− u(t), e imx〉|2(1 + m2)−s

+
∑

|m|≥ε−β

E|〈uε(t)− u(t), e imx〉|2(1 + m2)−s

for some β ∈ (0, 1). For the high modes∑
|m|≥ε−β

E|〈uε(t)−u(t), e imx〉|2(1+m2)−s . ε2βs
(
E‖uε(t)‖2 + E‖u(t)‖2

)
.

If E‖uε(t)‖2 doesn’t blow up too much, then we need only worry about
the low modes.
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Sketch of Proof

We have a mild solution given by

uε(t) =
∑
k

λk

∫ t

0
Sε(t − s)e ikxdWk(s)

where Sε is the semigroup generated by Lε.

We take |m| < ε−β and try to approximate

〈uε, e imx〉 =
∑
k

λk

∫ t

0
〈Sε(t − s)e ikx , e imx〉dWk(s)

This can be approximated using (a quantitative version of) our classical
result

Sε(t − s)e ikx = e ikx−k
2(t−s) +O(εk)

David Kelly (Warwick) Multiscale SPDEs November 3, 2013 8 / 1



Sketch of Proof

We have a mild solution given by

uε(t) =
∑
k

λk

∫ t

0
Sε(t − s)e ikxdWk(s)

where Sε is the semigroup generated by Lε.
We take |m| < ε−β and try to approximate

〈uε, e imx〉 =
∑
k

λk

∫ t

0
〈Sε(t − s)e ikx , e imx〉dWk(s)

This can be approximated using (a quantitative version of) our classical
result

Sε(t − s)e ikx = e ikx−k
2(t−s) +O(εk)

David Kelly (Warwick) Multiscale SPDEs November 3, 2013 8 / 1



We have that

〈uε(t), e imx〉 = λm

∫ t

0
e−m

2(t−s)dWm(s) +
∑
k

λk

∫ t

0
〈Rk

ε (t − s), e imx〉dWk

= 〈u, e imx〉+
∑
k

λk

∫ t

0
〈Rk

ε (t − s), e imx〉dWk(s)

Estimates for Rk
ε get bad when k ∼ ε−1, so this only works if λk � k−1/2.

A better approach is to use the adjoint semigroup

〈uε(t), e imx〉 =
∑
k

λk

∫ t

0
〈e ikx , S∗ε (t − s)e imx〉dWk(s)

With the adjoint classical result

S∗ε (t − s)e imx = ρ(x/ε)e imx−m2(t−s) +O(εm)
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We have

〈uε(t), e imx〉 =
∑
k

λk〈e ikx , ρ(x/ε)e imx〉
∫ t

0
e−m

2(t−s)dWk(s) + R

Since ε−1 ∈ N, only terms with k = m + p/ε for any p ∈ Z will remain.

We have ∑
p

λm+p/ε〈ρ, e ipx〉
∫ t

0
e−m

2(t−s)dWm+p/ε(s)

and isolating the first term

λm

∫ t

0
e−m

2(t−s)dWm(s) +
∑
p 6=0

λm+p/ε〈ρ, e ipx〉
∫ t

0
e−m

2(t−s)dWm+p/ε(s)

If λk → 0, this proves the result for Q compact.
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If λk → λ̄ 6= 0, then these extra terms no longer vanish. We have that∑
p

λm+p/ε〈ρ, e ipx〉
∫ t

0
e−m

2(t−s)dWm+p/ε(s)

is equal in distribution to(∑
p

|λm+p/ε|2|〈ρ, e ipx〉|2
)1/2 ∫ t

0
e−m

2(t−s)dŴm(s)

→
(
|λm|2 + |λ̄|2(‖ρ‖2 − 1)

)1/2 ∫ t

0
e−m

2(t−s)dŴm(s)

This proves the result for Q bounded.
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Ergodic Properties

If µε and µ are (respectively) the invariant measures of the original and
limiting SPDEs then we can show that

µε → µ as ε→ 0

under the H−s Wasserstein metric.
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Extensions

Similar results hold for all SPDEs of the form

duε(t) = Lεuε(t)dt +
∑
k

qk(x/ε)e ikxdWk(t)

for C 1 periodic functions qk . This is the structure possessed by noise that
is cell-translation invariant. i.e. The law of the noise is invariant if you
shift it by a cell.

Thank You!
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