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Outline of talk

• Invariance principles (turning chaos into Brownian motion)

• Homogenization of chaotic slow-fast systems

• Why rough path theory is useful
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Invariance principles



Donsker’s Invariance Principle I

Let {ξi}i≥0 be i.i.d. random variables with Eξi = 0 and Eξ2
i <∞.

Let Sn =
∑n−1

j=0 ξi and define the path

W (n)(t) =
1√
n

Sbntc .

Then Donsker’s invariance principle * states that W (n) →w W in cadlag
space, where W is a multiple of Brownian motion.

It’s called an invariance principle because the result doesn’t care what
random variables you use.
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Donsker’s Invariance Principle II (Young 98, Melbourne,
Nicol 05,08)

We can even replace {ξi}i≥0 with iterations of a chaotic map.

That is, let T : Λ→ Λ be a “sufficiently chaotic” map, with T -invariant
ergodic measure µ on probability space (Λ,M), and let v : Λ→ Rd satisfy∫

Λ v dµ = 0 . If

W (n)(t) = n−1/2

bntc−1∑
j=0

v ◦ T j ,

then W (n) →w W in the cadlag space, where W is Brownian motion with
covariance

Σαβ =

∫
Λ

vαvβdµ+
∞∑
n=1

∫
Λ

vγ(vβ ◦ T n)dµ+
∞∑
n=1

∫
Λ

vβ(vγ ◦ T n)dµ
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Donsker’s Invariance Principle III

We can do the same in continuous time, with a chaotic flow.

That is, let {φt} be a “sufficiently chaotic” flow on Λ, with invariant
measure µ. Let v : Λ→ Rd satisfy

∫
Λ v dµ = 0 . If

W (n)(t) = ε

∫ ε−2t

0
v ◦ φs ds ,

then W (n) →w W in the sup-norm topology, where W is Brownian motion
with covariance

Σαβ =

∫
Λ

vαvβdµ+

∫ ∞
0

∫
Λ

vγ(vβ ◦ φs)dµds +

∫ ∞
0

∫
Λ

vβ(vγ ◦ φs)dµds
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What does “sufficiently chaotic” mean?

In the discrete time case

sufficiently chaotic ≈ decay of correlations

More precisely, for the above v ∈ L1(Λ) and all w ∈ L∞(Λ), we have that∣∣∣∣ ∫
Λ

v w ◦ T ndµ

∣∣∣∣ . ‖w‖∞n−τ ,

for τ big enough.

This holds for

• Uniformly expanding or uniformly hyperbolic

• Non-uniformly hyperbolic maps modeled by “Young towers”.

Eg. Henon-like attractors, Lorenz attractors (flows)
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Invariance principle: sketch of proof I

The continuous invariance principle
follows from the discrete invariance

principle.
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Invariance principle: sketch of proof II

The idea is to use a known invariance principle for martingales. Namely,
suppose m1,m2, . . . is a stationary, ergodic, martingale difference
sequence. If

n−1∑
i=0

mi is a martingale, then n−1/2

bntc−1∑
i=0

mi →w BM

So if
∑n−1

i=0 v ◦ T i were a martingale then we’d be in business.
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Invariance principle: Idea of proof III

Actually, it is only a semi-martingale, with respect to the “filtration”

T−1M,T−2M,T−3M, . . .

where M is the sigma algebra from the original measure space. Moreover,
we can write

v = m + a

where

Mn :=
n−1∑
i=0

m ◦ T i is a martingale

and

An :=
n−1∑
i=0

a ◦ T i is bounded uniformly in n

This is called a martingale approximation.
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Invariance principle: Idea of proof IIII

So if we write

W (n)(t) = M(n)(t) + A(n)(t)

= n−1/2

bntc−1∑
i=0

m ◦ T i + n−1/2

bntc−1∑
i=0

a ◦ T i

Then we clearly have that

W (n) →w W .

However ... the world isn’t quite so nice, since in fact

T−1M⊃ T−2M⊃ T−3M⊃ . . .

So we need to reverse time.
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Using invariance principles for
slow-fast systems



Slow-Fast systems in continuous time

This idea can be applied to the homogenisation of slow-fast systems. For
example

dX (ε)

dt
= ε−1h(X (ε))v(Y (ε)(t)) + f (X (ε),Y (ε))

dY (ε)

dt
= ε−2g(Y (ε)) ,

where the fast dynamics Y (ε)(t) = Y (ε−2t) with Ẏ = g(Y ) describing a
chaotic flow, with ergodic measure µ and again

∫
v dµ = 0. We can

re-write the equations as

dX (ε) = h(X (ε))dW (ε) + f (X (ε),Y (ε))dt where

W (ε)(t)
def
= ε−1

∫ t

0
v(Y (ε)(s))ds = ε

∫ ε−2t

0
v(Y (s))ds
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Fast-Slow systems in discrete time

We can do the same for discrete time systems. For example, define
X : N→ Rd and Y : N→ Λ by

X (n + 1) = X (j) + εh(X (n))v(Y (n)) + ε2f (X (n),Y (n))

Y (n + 1) = T Y (n) ,

where T : Λ→ Λ is a chaotic map. If we let X (ε)(t) = X (bε−2tc) and
Y (ε) = Y (bε−2tc) then we have

dX (ε) = h(X (ε))dW (ε) + f (X (ε),Y (ε))dt

where

W (ε)(t)
def
= ε

bε−2tc−1∑
j=0

v ◦ T j

and where the integral is computed as a left Riemann sum.
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For simplicity, we will focus on the more
natural continuous time homogenization.



What is known? (Melbourne, Stuart ‘11)

If the flow is chaotic enough so that

W (ε)(t) = ε

∫ ε−2t

0
v(y(s))ds →w W ,

and either d = 1 or h = Id

then we have that X (ε) → X , where

dX = h(X ) ◦ dW + F (X )dt ,

where the stochastic integral is of Stratonovich type and where
F (·) =

∫
f (·, v)dµ(v).
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Continuity with respect to noise (Sussmann ‘78)

The crucial fact that allows these results to go through is continuity with
respect to noise. That is, let

dX = h(X )dU + F (X )dt ,

where U is a smooth path.

If d = 1 or h(x) = Id for all x , then Φ : U → X is continuous in the
sup-norm topology.

Therefore, if W (ε) →w W then X (ε) = Φ(W (ε))→w Φ(W ) .
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This famously falls apart when the noise is both
multidimensional and multiplicative. That is, when

d > 1 and h 6= Id .

This fact is the main motivation behind rough path theory



Continuity with respect to rough paths (Lyons ‘97)

As above, let
dX = h(X )dU + F (X )dt ,

where U is a smooth path. Let U : [0,T ]→ Rd×d be defined by

Uαβ(t)
def
=

∫ t

0
Uα(s)dUβ(s) .

Then the map
Φ : (U,U) 7→ X

is continuous with respect to the “dγ topology”.

This is known as continuity with respect to the rough path (U,U).

David Kelly (Warwick/UNC) Homogenization for chaotic dynamical systems November 3, 2013 19 / 26



The dγ topology

The space of γ-rough paths is a metric space (but not a vector space).

Objects in the space are pairs of the form (U,U) where U is a γ-Hölder
path and where U is a natural “candidate” for the iterated integral

∫
UdU.

On the space we define the metric

dγ(U,U,V ,V) = sup
s,t∈[0,T ]

(
|U(s, t)− V (s, t)|

|s − t|γ
+
|U(s, t)− V(s, t)|

|s − t|γ

)
where

U(s, t) = U(t)− U(s) and Uβγ(s, t) =

∫ t

s
Uβ(s, r)dUγ(r)
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Continuity with respect to rough paths

Thus, we set

W(ε),αβ(t) =

∫ t

0
W (ε),α(s)dW (ε),β(s) ,

(which is defined uniquely). If we can show that

(W (ε),W(ε))→w (W ,W)

where W is some identifiable type of iterated integral of W , then we have

X (ε) → X = Φ(W ,W) .
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Convergence of the rough path

We have the following result

Theorem (Kelly, Melbourne ‘13)

If the fast dynamics are ”sufficiently chaotic”, then
(W (ε),W(ε))→w (W ,W) where W is a Brownian motion and

Wαβ(t) =

∫ t

0
W α(s) ◦ dW β(s) +

1

2
Dαβt

where

Dβ,γ =

∫ ∞
0

∫
Λ

(vβ vγ ◦ φs − vγ vβ ◦ φs) dµ ds ,

and φ is the flow generated by the chaotic dynamics ẏ = f (y).

David Kelly (Warwick/UNC) Homogenization for chaotic dynamical systems November 3, 2013 22 / 26



Homogenised equations

Corollary

Under the same assumptions as above, the slow dynamics
X (ε) →w X where

dX = h(X ) ◦ dW +

(
G (X ) +

1

2
Dβγ∂αhβ(X )hαγ(X )

)
dt .

Rmk. The only case where one gets Stratonovich is when the
Auto-correlation is symmetric. For instance, if the flow is reversible.
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Idea of proof I

We will focus on how to prove the iterated invariance principle.

Theorem (Kurtz & Protter 92)

Suppose that Un,V n are semi-martingales and that
(Un,V n)→w (U,V ) in cadlag space, with the limits also
semi-martingales. Suppose that V n has decomposition
V n = Mn + Cn and that

1) supn E[Mn]t <∞, for each t ∈ [0,T ].

2) supn E|Cn|TV <∞
Then

(Un,V n,

∫
UndV n)→w (U,V ,

∫
UdV ) ,

in cadlag space, where all the above integrals of of Ito type. We
say that {V n} is good sequence of semi-martingales.
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Idea of proof II

The sequence W (n) is not good, but the sequence M(n) is good.

Hence, to calculate
∫

W (n)dW (n), we need to expand∫
W (n)dW (n) =

∫
M(n)dM(n) +

∫
M(n)dA(n)

+

∫
A(n)dM(n) +

∫
A(n)dA(n)

The extra terms can be calculated using the ergodic theorem.
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Extensions

• What if the slow equation is non-product form?

dX (ε)

dt
= ε−1h(X (ε)(t),Y (ε)(t))

• What if the slow equation is coupled into the fast equation?

Thanks!
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