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Donsker's Invariance Principle |

Let {¢;}i>0 be i.i.d. random variables with E¢; = 0 and Ef,? < 0.
Let S, = Z}';ol &; and define the path

1
%SLntJ -

Then Donsker's invariance principle * states that W, —,, W in cadlag
space, where W is a multiple of Brownian motion.

Wa(t) =

It's called an invariance principle because the result doesn’t care what
random variables you use.
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Donsker's Invariance Principle 1l (Young 98, Melbourne,
Nicol 05,08)

We can even replace {;}i>0 with iterations of a chaotic map.

That is, let T : A — A be a "sufficiently chaotic” map, with T-invariant
ergodic measure y, and let v : A — R¥ satisfy [, v du=0. Then

[nt]—1
W, (t) = n—1/2 Z vo T/,
j=0

then W, —,, W in cadlag space, where W is a multiple of Brownian
motion.
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Fast-Slow Systems

This idea can be applied to the homogenisation of slow-fast systems. For
example

dx _

dte —_ 1h(xE)v(yE(t)) + g(xe, ye)
d _

(j/tE =€ 2f()/s) )

where the fast dynamics y.(t) = y(¢~2t) with y = g(y) describing a
chaotic flow, with ergodic measure p and again [ v du = 0. We can
re-write the equations as

dx. = h(xc)dw: + g(xe, ye)dt where

—2

o, 1 /Ot v(ye(s))ds:s/oa Cu(y(5))ds

David Kelly (Warwick) Homogenisation for maps and flows November 3, 2013 4/10



What is known? (Melbourne, Stuart ‘11)

If the flow is chaotic enough so that
t
we(t) = 5—1/ V(ye(s))ds —u W,
0

and either d =1or h=1d
then we have that x. — X, where
dX = h(X)odW + G(X)dt,

where the stochastic integral is of Stratonovich type and where
G() = [g(-v)du(v).
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Continuity with respect to noise (Sussmann ‘78)

The crucial fact that allows these results to go through is continuity with
respect to noise. That is, let

dx = h(x)dU + g(x)dt .
If d =1o0r h=Id, then ®: U — x is continuous.
Therefore, if w, —,, W then x. = ®(w.) = (W) .

This famously falls apart when the noise is both multidimensional and
multiplicative.
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Continuity with respect to rough paths

To treat the solution map ® when the underlying SDE is both both
multidimensional and multiplicative, we use rough path theory. Given
an SDE driven by a noise U : [0, T] — RY. Let U: [0, T] — R9*9 be
defined by
t
o8 (¢) % / US(5)dUP(s) .
0

Then the map
® : (U,U) +— solution of SDE

is continuous. This is known as continuity with respect to the rough
path (U, D).
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Continuity with respect to rough paths

Thus, we set .
W) = [ we(s)dwl(s).
(which is defined uniquely). If we can show that
(we, We) = (W, W)
where W is some identifiable type of iterated integral of W, then we have

Xe = X = O(W, W) .
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Convergence of the rough path

We have the following result

Theorem (Kelly, Melbourne ‘13)

If the fast dynamics are "sufficiently chaotic”, then
(we, W) = (W, W) where W is a multiple of Brownian motion
and . .
WeB(t) = / Wa(s) o dWA(s) + 7Dt
0

where

DB’7:/ /(vﬁvvogbs—vfyvﬁod)s)duds,
0 A

and ¢ is the flow generated by the chaotic dynamics y = f(y).
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Homogenised equations

Corollary

Under the same assumptions as above, the slow dynamics
Xe —w X where

dX. = h(X)odW + <G(X) + ;Dmaahﬁ(X)hm(XO dt .

Rmk. The only case where one gets Stratonovich is when the
Auto-correlation is symmetric.
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