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Fast-slow systems

Fast slow SDEs:

dXe
= F(XE, vE

dt ( ) )

dye dw
— Xs Y€ -1/2 XE Ye

O gxe v+ e v

where ¢ < 1.
Let Y« be ‘virtual fast process’ with frozen x:

dy, dw
— % %
o~ g(x, Yx) +o(x,Yx)—- ™

Assume that Yy has an ergodic invariant measure ;i and is sufficiently
mixing.
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Averaging

The slow variables satisfy an averaging principle
XE —a.s. Y where T = F(Y)

and F(x) = [ f(x,y)ix(dy).
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A simple metastable example

Suppose p > 0 and

dXe
— Y& _ (XE® 3
i (X%)

0 o

dY® = —(uX® — Y®)dt + —=dW
~(u )dt + 7
dX

This has averaged equation <7 = puX — X Symmetric double-well
potential w/equilibria at 4-,/11 and saddle at origin.

When ¢ < 1, the long time behavior of X¢ will be qualitatively different to
the averaged system. The system exhibits hopping between wells due to
fluctuations from the average.
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The central limit theorem describes small fluctuations about the average.

If we let Z¢ = £~1/2(X¢ — X) then one can show Z° —,, Z where

dZ = Bo(X)Zdt + n(X)dV

where V is a std Brownian motion and
Bo(x) = [ Vaf(x.y)(e)
[ B )T ablyintaar
10”0 = [ EFx Vo) Vo0 e

where F(X,y) = f(x,y) — F(x).
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Suppose X°¢ satisfies a large deviations principle:
limelogP(X® €l) = —inf
lim e log P(X® €T) = — inf Spo.7)(7)

for a set I be a set of continuous paths « : [0, T] — R in the slow state
space.

A large deviation principle quantifies many important features of O(1)
fluctuations in metastable systems.
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For instance, Suppose that D C R is open w/ smooth boundary 9D,
and x* is an asymptotically stable equilibrium for the averaged system
dX 8%

@& = F(X).

Define the transition time 7° = inf{t > 0 : X ¢ D}. Define the
quasi-potential

V(x,y) = inf inf S
(x,¥) T20(0)=xm(T)=y [O,T](’Y)

Then the mean first passage/exit time is given by

lim elog ET° = inf V
fim e l0g Er” = inf, V(x.)
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For FS systems, Varadhan’s Lemma (reverse) tells us the following:

Let u(t, x) = limz_0 € log Ex exp(ep(X5(t))). If u satisfies the
Hamilton-Jacobi equation

Oru =H(x,Vu) , u(0,x)=¢

for suitable class of ¢, then X¢ satisfies an LDP with rate function
Spo,71(v / L(y (s))ds

where L is the Lagrangian associated with the Hamiltonian H

L(x,B) = Sl;p(t9 B = H(x,0)) .

Moral of the story: we can identify LDPs via the associated HJ equation.
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Heterogeneous multi scale method for FS systems

A simple numerical scheme for the slow variables x§ ~ X¢(nAt) when
e 1

(n+1)At
Xopq = X5+ / G Y5 ()
nAt

Then approximate the integral by simulating the virtual fast process on
mesh size it < At

(n4+1)At N-1
(x5, Ya ))ds =~ (x5, v5)

where Not = At and (for instance) is given by Euler-Maruyama

yij+l - yf?,_/ + 6_1g( Xn» ynd)ét +e 1/20—(Xf17 yfw) v (5t§nJ

forj=0,...,N—1.
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Speeding up the method

The key observation of HMM is that one does not need the virtual process

Y over the whole window [nAt, (n+ 1)At), but only over a fraction of it
[nAt, (n+ 1/X)At] for some A > 1.

By the ergodic theorem

1 (n+1)At A (n+1/X)At
ar | e YEEE R = o [ GG i (s)ds
At nAt ! nAt !

provided that At/e and At/(e)) are larger than the mixing time for Y.
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HMM summary

The update x5, — x7,,; works in two steps

1 - Micro step: Compute an approximation F, \(x%) of the integral
A (n+1/X)At s e
2 / N F(x5, V2. (5))ds

by simulating the virtual fast process Y. over the window

[nAt,(n+ 1/X)At). Requires 0t < At, 5t < ¢ and At/(eA) larger than
mixing time.

2 - Macro step: x;,,; = x5, + Fp A\ (x) At
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We know that HMM is consistent with the averaging principle. That
is, as ¢ — 0 the sequence x5, defined by HMM converges to

Xn+1 = Xn + F(Xn)At
which is a consistent numerical method for the averaged equation
dX 32
What about fluctuations?

1- Let z5 = e~ /2(x5 — X,,). Does z% converge to a numerical scheme for
Zase— 07

2 - Let up\(x) = lim0 ¢ log Ex exp(e1p(x5)). Is upx a numerical
method for the true HJ equation?
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HMM Fluctuations are inflated by A

As ¢ — 0, z5, converges to z,, which is a numerical scheme for the SDE
dZ = Bo(X)Zxdt + Van(X)dV .
Moreover, we find that uy ,(x) is a numerical method for the HJ equation
Oruy = %%(X,/\VU,\)

where H is the true Hamiltonian for X¢.In particular, the quasi-potential is
Va(x,y) = A"1V(x, y). It follows that mean first passage times will shrink

1
Er. < exp ((E)\V(x*, 8D)>
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Why the inflation?

In the HMM approximation, with A € Z, we are essentially replacing
(n+1/X)At (n+1)At
/ f(x,Y(s))ds+ -+ / f(x, Y5(s))ds
nAt (n+(A=1)/X)At
with

(n+1/X)At (n+1/X)At
/ f(x,Yy(s))ds+---+ / f(x, Y(s))ds
nAt nAt

ie. Replace sum of \ weakly correlated random variables with
A X first random variable. Clearly this inflates the variance.
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Parallel HMM

There is a simple way to fix the problem. The update x{, — X} ; works in
two steps

1 - X parallel micro steps: Compute an approximation F, y(x3,) of the
integral

A (n+1/X)At
Sar o A Yie)ds
k=1 n

by simulating A independent copies of the virtual fast processes Y k for
k =1,..., )\ over the window [nAt, (n+ 1/\)At).

2 - Macro step: x;,,; = x5, + Fp A\ (x}) At
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Parallel HMM

e Since the virtual fast processes are independent, they can be
simulated in parallel. This is a kind of parallel-in-time method.

e We can show that this method is in fact consistent with X¢ at
both the level of small fluctuations and large deviations.
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Small fluctuations example |

Suppose ¢ < 1 and

€
dX° e e
dt
€ 9 € € g
dYe = Z(uX® — Y)dt + —=dW
€ NG
. . dX _ ~
This has averaged equation % = (1 — 1)X.
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Large deviations example
Suppose ¢ > 0 and

dXe
— Y& _(X¢ 3
™ (X%)
g 9 g g 4
dY® = —(uX® = Y®)dt + —=dW
€ NG
This h d equation X = ;X — X°
IS Nas averaged equation Jt = UA — .
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Figure: Mean first passage time
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All my slides are on my website (www.dtbkelly.com) Thank you!
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