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Outline

Two problems :

1 - Fast-slow systems in continuous time

2 - Fast-slow systems in discrete time



Fast-slow systems in continuous time

Let Ẏ = g(Y ) be some chaotic ODE with state space Λ and
invariant measure µ. We consider fast-slow systems of the form

dX (ε)

dt
= ε−1h(X (ε),Y (ε)) + f (X (ε),Y (ε))

dY (ε)

dt
= ε−2g(Y (ε)) ,

where ε� 1 and h, f : Re × Λ→ Re and
∫

h(·, y) µ(dy) = 0. Also
assume that Y (0) ∼ µ.

The aim is to characterize the distribution of X (ε) as ε→ 0.



Fast-slow systems as SDEs

Consider the simplified slow equation

dX (ε)

dt
= ε−1h(X (ε))v(Y (ε)) + f (X (ε))

where h : Re → Re×d and v : Λ→ Rd with
∫

v(y)µ(dy) = 0.

If we write W (ε)(t) = ε−1
∫ t
0 v(Y (ε)(s))ds then

X (ε)(t) = X (ε)(0) +

∫ t

0
h(X (ε)(s))dW (ε)(s) +

∫ t

0
f (X (ε)(s))ds

where the integral is of Riemann-Lebesgue type.



Invariance principle for W (ε)

We can write W (ε) as

W (ε)(t) = ε

∫ t/ε2

0
v(Y (s))ds = ε

bt/ε2c−1∑
j=0

∫ j+1

j
v(Y (s))ds

The assumptions on Y lead to decay of correlations for the
sequence

∫ j+1
j v(Y (s))ds.

One can show that W (ε) ⇒W in the sup-norm topology, where
W is a multiple of Brownian motion.



What about the SDE?

Since

X (ε)(t) = X (ε)(0) +

∫ t

0
h(X (ε)(s))dW (ε)(s) +

∫ t

0
f (X (ε)(s))ds

This suggest a limiting SDE

X (t) = X (0) +

∫ t

0
h(X (s)) ? dW (s) +

∫ t

0
f (X (s))ds

But how should we interpret ?dW ?



Continuity with respect to noise (Sussmann ‘78)

Suppose that

X (t) = X (0) +

∫ t

0
h(X (s))dU(s) +

∫ t

0
f (X (s))ds ,

where U is a smooth path.

If d = 1 or h(x) = Id for all x , then Φ : U → X is continuous in
the sup-norm topology.



The simple case (Melbourne, Stuart ‘11)

If the flow is chaotic enough so that

W (ε) ⇒W ,

and either d = 1 or h = Id

then we have that X (ε) ⇒ X in the sup-norm topology, where

dX = h(X ) ◦ dW + f (X )ds ,

where the stochastic integral is of Stratonovich type.



This famously falls apart when the noise is both
multidimensional and multiplicative. That is,

when d > 1 and h 6= Id .



Continuity with respect to rough paths (Lyons ‘97)

As above, let

X (t) =

∫ t

0
h(X (s))dU(s) +

∫ t

0
F (X (s))ds ,

where U is a smooth path. Let U : [0,T ]→ Rd×d be defined by

Uαβ(t)
def
=

∫ t

0
Uα(s)dUβ(s) .

Then the map
Φ : (U,U) 7→ X

is continuous with respect to the “ργ topology” . We call this the
rough path topology.



The rough path topology

The ργ topology is an extension of the γ-Hölder topology to the
space of objects of the form (U,U) ie. the space of rough paths.
It has a metric

ργ(U,U,V ,V) = sup
s,t∈[0,T ]

(
|U(s, t)− V (s, t)|

|s − t|γ
+
|U(s, t)− V(s, t)|
|s − t|2γ

)
where

U(s, t) = U(t)− U(s) and Uβγ(s, t) =

∫ t

s
Uβ(s, r)dUγ(r)

In particular, it is stronger than the sup-norm topology.



A general theorem for continuous fast-slow systems

Let W(ε),αβ(t) =
∫ t
0 W (ε),α(s)dW (ε),β(s).

Suppose that (W (ε),W(ε))⇒ (W ,W) in the sup-norm topology
where W is Brownian motion and

Wαβ(t) =

∫ t

0
W α(s) ◦ dW β(s) + λαβt

where λ ∈ Rd×d and that (W (ε),W(ε)) satisfy the tightness
estimates.

Then X (ε) ⇒ X in the sup norm topology, where

dX = h(X ) ◦ dW +

f (X ) +
∑
i ,j ,k

λik∂jhi (X )hk
j (X )

 dt



Tightness estimates

To lift a sup-norm invariance principle to a ργ invariance principle,
we use the Kolmogorov criterion. Let

W (ε)(s, t) = W (ε)(t)−W (ε)(s)

W(ε),αβ(s, t) =

∫ t

s
W (ε),α(s, r)dW (ε),β(r)

The tightness estimates are of the form

(Eµ|W (ε)(s, t)|q)1/q . |t−s|α and (Eµ|W(ε)(s, t)|q/2)2/q . |t−s|2α

for q large enough and α > 1/3.



We have the following result

Theorem (K, Melbourne ‘14)

If the fast dynamics are ”sufficiently chaotic”, then
(W (ε),W(ε))⇒ (W ,W) where W is a Brownian motion and

Wαβ(t) =

∫ t

0
W α(s) ◦ dW β(s) +

1

2
λαβt

where

λβγ =

∫ ∞
0

Eµ(vβ vγ(Y (s))− vβ(Y (s)) vγ) ds .



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics
X (ε) ⇒ X where

dX = h(X ) ◦ dW +

f (X ) +
∑
i ,j ,k

λik∂jhi (X )hk
j (X )

 dt .

Rmk. The only case where one gets Stratonovich is when the
Auto-correlation is symmetric. For instance, if the flow is
reversible.



Now let’s try discrete time ...



Discrete time fast-slow systems

Suppose that T : Λ→ Λ is a chaotic map with invariant measure
µ. We consider the discrete fast-slow system

X
(n)
j+1 = X

(n)
j + n−1/2h(X

(n)
j ,T j) + n−1f (X

(n)
j ,T j)

Now define the path X (n)(t) = X
(n)
bntc.

The aim is to characterize the distribution of the path X (n) as
n→∞.



Fast-slow systems as SDEs

Lets again simplify the slow equation to

X
(n)
j+1 = X

(n)
j + n−1/2h(X

(n)
j )v(T j) .

If we sum these up, we get

X (n)(t) = X (n)(0) +

bntc−1∑
j=0

h(X
(n)
j )

v(T j)

n1/2

If we write W (n)(t) = n−1/2
∑bntc−1

j=0 v(T j) then the path X (n)(t)
satisfies

X (n)(t) = X (0) +

∫ t

0
h(X (n)(s−))dW (n)(s)

where the integral is defined in the “left-Riemann sum” sense.



Invariance principle

W (n)(t) = n−1/2

bntc−1∑
j=0

v(T j)

We still have that W (n) ⇒ W in the Skorokhod
topology, where W is a multiple of Brownian
motion.
But W (n) is a step function ... so RPT doesn’t
really work... even if it did, you’ll never satisfy the
tightness estimates.



A general theorem for discrete fast-slow systems (K 14’)

Let
W(n),αβ(t) = n−1

∑
0≤i<j<bntc

vα(T i )vβ(T j)

Suppose that (W (n),W(n))⇒ (W ,W) in the Skorokhod topology
where W is Brownian motion and

Wαβ(t) =

∫ t

0
W α(s) ◦ dW β(s) + λαβt

where λ ∈ Rd×d and that (W (n),W(n)) satisfy the discrete
tightness estimates.

Then X (n) ⇒ X in the Skorokhod topology, where

dX (t) = h(X ) ◦ dW +
∑
i ,j ,k

λik∂jhi (X )hk
j (X )dt



Discrete tightness estimates

The discrete tightness estimates are a courser version of the
Kolmogorov criterion. Let

W (n),α(s, t) = n−1/2
∑

bnsc≤i<bntc

vα(T i )

W(n),αβ(s, t) = n−1
∑

bnsc≤i<j<bntc

vα(T i )vβ(T j)

Then the discrete tightness estimates are of the form

(Eµ|W (n)(
j

n
,

k

n
)|q)1/q .

∣∣∣∣ j − k

n

∣∣∣∣α and

(Eµ|W(n)(
j

n
,

k

n
)|q/2)2/q .

∣∣∣∣ j − k

n

∣∣∣∣2α
for all j , k = 0, . . . , n, for q large enough and α > 1/3.



We have the following result

Theorem (K, Melbourne ‘14)

If the fast dynamics are ”sufficiently chaotic”, then
(W (n),W(n))⇒ (W ,W) in the Skorokhod topology, where W is a
Brownian motion and

Wαβ(t) =

∫ t

0
W α(s) ◦ dW β(s) +

1

2
καβt

where

καβ =
∞∑
j=1

Eµvαvβ(T j)



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics
X (n) ⇒ X where

dX = h(X ) ◦ dW +
∑
i ,j ,k

1

2
κjk∂ ihj(X )hik(X )dt .



Idea of proof

Recall that

X
(n)
j+1 = X

(n)
j + n−1/2h(X

(n)
j )v(T j) .

The idea is to approximate X (n)(t) = X
(n)
bntc by X̃ (n)(t), which

solves an equation driven by smooth paths.



Idea of proof

This can be achieved by finding a (piecewise smooth) rough path
W̃(n) = (W̃ (n), W̃(n)) such that(

W̃ (n)(
j

n
), W̃(n)(

j

n
)

)
=

(
W (n)(

j

n
),W(n)(

j

n
)

)
for all j = 0, . . . , n and which is Lipschitz in between mesh points.

Then define

X̃ (n)(t) = X (0) +

∫ t

0
h(X̃ (n)(s))dW̃(n)(s)



Idea of proof

Alternatively we can write

X̃ (n)(t) = X (0) +

∫ t

0
h(X̃ (n)(s))dW̃ (n)(s)

+
∑
i ,j ,k

∫ t

0

1

2
∂ ihj(X )hik(X )dZ (n),jk(s)

where Z (n) is a piecewise smooth path.



Idea of proof

By construction, X̃ (n) is a good approximation of X (n).

Proposition

We have that

sup
j=0...n

|X (n)(j/n)− X̃ (n)(j/n)| . Kn,γn1−3γ ,

for any γ ∈ (1/3, 1/2], where the constant Kn,γ depends on n
through the “discrete Hölder norms” of (W (n),W(n)).

As a consequence, if X̃ (n) ⇒ X then X (n) ⇒ X .



Idea of proof

But since X̃ (n) is driven by smooth paths, we can apply the ideas
from the first half of the talk.

But again by construction ...

• If (W (n),W(n))⇒ (W ,W) in the Skorokhod topology then
(W̃ (n), W̃(n))⇒ (W ,W) in the sup-norm topology.

• If (W (n),W(n)) satisfy the discrete tightness estimates, then
(W̃ (n), W̃(n)) satisfy the continuous tightness estimates.

Thus X̃ (n) ⇒ X .

�


