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Outline

Two problems :

1 - Fast-slow systems in continuous time

2 - Fast-slow systems in discrete time



Fast-slow systems in continuous time

Let Y = g(Y) be some chaotic ODE with state space A and
invariant measure p. We consider fast-slow systems of the form

(€)

P = (X, YO) 4 £(xO), 1)
(€)

dzt =e2g(Y9),

where e < 1 and h,f : R® x A = R® and [ h(-,y) p(dy) = 0. Also
assume that Y(0) ~ p.

The aim is to characterize the distribution of X() as ¢ — 0.



Fast-slow systems as SDEs

Consider the simplified slow equation

(e)
e = X (Y19) 4 F(xO)
Cdt
where h: R® — R*9 and v : A — R with [ v(y)u(dy) = 0.
If we write W()(t) = 7 [[v(Y()(s))ds then

t

XE)(t) = XE(0) + / h(X©)(s))d W) (s) + / t F(X©)(s))ds
0

0

where the integral is of Riemann-Lebesgue type.



Invariance principle for W)

We can write W) as

£/e2 [t/e2)-1 g
WE(t) = 5/0 v(Y(s))ds = e /J v(Y(s))ds
J

j=0

The assumptions on Y lead to decay of correlations for the
sequence L.JH v(Y(s))ds.

One can show that W() = W in the sup-norm topology, where
W is a multiple of Brownian motion.



What about the SDE?

Since

Ch(XO(8))dWE(s) + / CF(XO)(s))ds
0

XO(0) = xO0)+ [

0

This suggest a limiting SDE

X(t):X(O)+/0 h(X(s))*dW(s)~|—/0 f(X(s))ds

But how should we interpret xd W 7



Continuity with respect to noise (Sussmann ‘78)

Suppose that

X() = X(0) + /0 h(X(s))dU(s) + /0 F(X(s))ds ,

where U is a smooth path.

If d =1 or h(x) = Id for all x, then & : U — X is continuous in
the sup-norm topology.



The simple case (Melbourne, Stuart ‘11)

If the flow is chaotic enough so that
we) = w,

and either d =1 or h =1d

then we have that X() = X in the sup-norm topology, where
dX = h(X)odW + f(X)ds,

where the stochastic integral is of Stratonovich type.



This famously falls apart when the noise is both
multidimensional and multiplicative. That is,
when d > 1 and h # Id.



Continuity with respect to rough paths (Lyons ‘97)

As above, let
t t
X(t):/ h(X(s))dU(s)+/ F(X(s))ds ,
0 0
where U is a smooth path. Let U : [0, T] — R9%9 be defined by
def [
Uos(r) / U (5)dUP(s) .

0

Then the map
¢:(U,U)— X

is continuous with respect to the “p, topology” . We call this the
rough path topology.



The rough path topology

The p, topology is an extension of the y-Holder topology to the
space of objects of the form (U, U) ie. the space of rough paths.
It has a metric

py(U, U, V, V)= sup (

|U(s,t) — V(s,t)| |U(s,t)— Vs, t)\)
s,t€[0,T]

|s — t|7 |s — t|>Y

where

U(s, t) = U(t) — U(s) and TS, t):/t UB(s, U7 (r)

S

In particular, it is stronger than the sup-norm topology.



A general theorem for continuous fast-slow systems

Let WEe8(t) = [ WE(s)dWEA(s).

Suppose that (W) W) = (W, W) in the sup-norm topology
where W is Brownian motion and

WoB(t) = /ot We(s) o dWB(s) + APt

where \ € R9%9 and that (W), W) satisfy the tightness
estimates.

Then X(€) = X in the sup norm topology, where

ik

dX = h(X)odW + (f(X) +> x’kafh"(X)hjk(X)) dt



Tightness estimates

To lift a sup-norm invariance principle to a p, invariance principle,
we use the Kolmogorov criterion. Let

WE (s, t) = WE(£) — WE)(s)

t
WEaB(s 1) = / W (s, ryd WEH(r)

The tightness estimates are of the form
(EWO(s, )| < [t—s|* and (E,[WE)(s, £)|9/2)2/9 < [t—s[>*

for g large enough and o > 1/3.



We have the following result

Theorem (K, Melbourne ‘14)
If the fast dynamics are "sufficiently chaotic”, then
(WE) W)Y = (W, W) where W is a Brownian motion and
t 1
WB(t) :/ Wo‘(s)odWﬂ(s)JrE)\aBt
0

where

ABY = /OOO E.(v?vI(Y(s)) — v (Y(s))v")ds.



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics
X©) = X where

dX = h(X) o dW + | £(X)+ > _ A I H (X)hf(X) | dt .
iJ,k

Rmk. The only case where one gets Stratonovich is when the
Auto-correlation is symmetric. For instance, if the flow is
reversible.



Now let's try discrete time ...



Discrete time fast-slow systems

Suppose that 7 : A — A is a chaotic map with invariant measure
1. We consider the discrete fast-slow system

X = X g 2, T (x0T

Now define the path X("(t) = X(L:)tj'

The aim is to characterize the distribution of the path X(" as
n— oo.



Fast-slow systems as SDEs

Lets again simplify the slow equation to

X(”)

0 =X 4 0= 2p(x M)y (1Y)

If we sum these up, we get
[nt]—1

X (¢) = Z h(x{M)Y 7’)

J ,,1/2

If we write W("(t) = n=1/2 ZJ: v( TJ) then the path X("(t)
satisfies

X (8) = X(0) + / (XD (s—))d W) (s)
0

where the integral is defined in the “left-Riemann sum” sense.



Invariance principle

|nt]—1
W) =2 3" v(T))
j=0

We still have that W(" = W in the Skorokhod
topology, where W is a multiple of Brownian
motion.

But W(" is a step function ... so RPT doesn't

really work... even if it did, you'll never satisfy the
tightness estimates.



A general theorem for discrete fast-slow systems (K 14')

WimaB (¢ -1 Z

0§I<J<Lntj

Let

Suppose that (WM W) = (W, W) in the Skorokhod topology
where W is Brownian motion and

WA (t /WO‘ ) o dWA(s) + 1Pt

where \ € R9%9 and that (W W(") satisfy the discrete
tightness estimates.

Then X(" = X in the Skorokhod topology, where

dX(t) = h(X) o dW + Y N &K (X)hf(X)dt
i,k



Discrete tightness estimates

The discrete tightness estimates are a courser version of the
Kolmogorov criterion. Let

Wime(s, ) = n=1/2 Z
LnsJ</<Lntj
wWmeB(s ) =n IZ VA (TY)
L"5J§1<J<L"tJ

Then the discrete tightness estimates are of the form

() Kyay/g < |4 =K
€W, Do 5|

() Kya2y2/q < |4 =
(€, Eypozyeie [

for all j,k=0,...,n, for q large enough and o > 1/3.



We have the following result

Theorem (K, Melbourne ‘14)

If the fast dynamics are "sufficiently chaotic”, then
(W WY = (W, W) in the Skorokhod topology, where W is a
Brownian motion and

t
1
WB(t) :/ We(s) o dWP(s) + Emaﬁt
0

where

o
KOP = Z Euvav’B(Tj)
j=1



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics
X = X where

dX = h(X)odW +> %f;jkﬁiirj(X)hik(X)dt :
i,k



|dea of proof

Recall that

X(”)

(0 =X 4 0 V2a(x v (T) .

The idea is to approximate X(")(t) = x 1J by X("(t), which

solves an equation driven by smooth paths.



|dea of proof

This can be achieved by finding a (piecewise smooth) rough path
W) = (WM W) such that

(Vvoﬂ(j)7vV00(j)>:: (Vvon(ﬁ),vyvﬁ(f)>

n n n

for all j =0,...,n and which is Lipschitz in between mesh points.

Then define

%Wﬂ:mm+/%dw@www@
0



|dea of proof

Alternatively we can write
~ t ~ ~
XM (1) = X(0) + / h(X(M(s))d W (M(s)
0

+> /t %G’H(X)hik(x)dZ(”)’fk(s)
0

i,k

where Z(" is a piecewise smooth path.



|dea of proof

By construction, X(" is a good approximation of X ("),

Proposition
We have that

sup (X)) = XOi/n)] S Koyt
j=0...n

for any v € (1/3,1/2], where the constant K, depends on n
through the “discrete Holder norms” of (W™ w(n).

As a consequence, if XM = X then X(M = X.



|dea of proof

But since X(" is driven by smooth paths, we can apply the ideas
from the first half of the talk.

But again by construction ...

o If (W(N”),W(”)) = (W, W) in the Skorokhod topology then
(W W) = (W, W) in the sup-norm topology.

o If (W(N”), W) satisfy the discrete tightness estimates, then
(W W7(n) satisfy the continuous tightness estimates.

Thus X(" = X.



