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Fast-slow systems

We consider fast-slow systems of the form

%): = eh(X, Y) + €2f(X, Y)
dy
AV

where ¢ < 1.

4Y = g(') be some mildly chaotic ODE with state space A and
ergodic invariant measure . (eg. 3d Lorenz equations.)

h,f :R" x A — R" and [ h(x,y) u(dy) = 0.

Our aim is to find a reduced equation for X.



Fast-slow systems

If we rescale to large time scales (~ ¢72) we have

dX
dt‘f = th(X., Yo) + F(X., Ye)
dy.

dt

= 2’5_2g(\/€) )

We turn X, into a random variable by taking Y (0) ~ p.
The aim is to characterise the distribution of the random path X.

as € — 0.



Fast-slow systems as SDEs

Consider the simplified slow equation

dx.

i e Lh(X)v(Ye) + F(Xe)

where h: R" — R™9 and v : A — RY with [ v(y)u(dy) = 0.

If we write W, (t) = ¢! fo ))ds then

Xg(t)_Xg(O)+/0th(X5(s))dW€(s)+/0t F(X.(s))ds

where the integral is of Riemann-Stieltjes type (d W, = d;/;/a ds).



Invariance principle for W,

We can write W; as

[t/e?]-1

Ws(t):z—:/ot/ (Y(5)) s-ez /JHV(Y (s))ds

The assumptions on Y lead to decay of correlations for the
sequence fjJH v(Y(s))ds.

For very general classes of chaotic Y/, it is known that W, = W in
the sup-norm topology, where W is a multiple of Brownian motion.

We will call this class of Y mildly chaotic.



What about the SDE?

Since

t

X.(t) = X.(0) + /0 B(X.(s))dWe(s) + /O F(X.(5))ds

This suggest a limiting SDE

X(L‘):)_((O)+/0 h()_((s))ade(s)~|—/0 f(X(s))ds

But how should we interpret xd W ? Stratonovich? [t67 neither?



For additive noise h(x) =/
the answer is simple.



Continuity with respect to noise (Sussmann ‘78)

Consider

X(t):X(O)+/O dU(s)+/0 f(X(s))ds,

where U is a uniformly continuous path.

The above equation is well defined and moreover ® : U — X is
continuous in the sup-norm topology.

Also works in the multiplicative noise case (h(X)dU) but only
when U is one dimensional.



The simple case (Melbourne, Stuart ‘11 + Gottwald,
Melbourne‘13)

If the flow is mildly chaotic (W, = W) then X. = X in the
sup-norm topology, where

dX =dW + f(X)ds .
In the multiplicative 1d noise case, the limit is Stratonovich

dX = h(X) odW 4+ f(X)ds .



The strategy

The solution map takes “irregular path space” to “solution space”
b W, — X

If this map were continuous then we could lift W, = W to
X: = X.



When the noise is both
multidimensional and
multiplicative, this strategy fails.



Ito, Stratonovich and family

SDEs are very sensitive wrt approximations of BM.

Suppose
dX = h(X)dW + f(X)dt

and define an approximation
dXn, = h(Xp)dW,+ f(Xp)dt

with some approximation W, of W.

Taking n — 0o, X, might converge to something completely
different to X. It all depends on the approximation W/,,.



Eg. 1 If W, is a step function approximation of W, then X,
converges to the Ito SDE

dX = h(X)dW + f(X)dt

Eg. 2 (Wong-Zakai) If W, is a linear interpolation of W, then X,
converges to the Stratonovich SDE

dX = h(X) o dW + £(X)dt

Eg. 3 (McShane, Sussman) If W/, is a higher order interpolation
of W, we can get limits which are neither Ito nor Stratonovich.



It is not enough to know that
W, — BM.

We need more information.



Rough path theory (Lyons ‘97)

Provides a unified definition of a DE driven by a noisy path

X(t) = X(0) + /O Ch(X(5))dU(s) + /0 " h(X(s))ds

when the dU integral is not well defined.

In addition to U we must be given another path U : [0, T] — R9*¢
which is (formally) an iterated integral

wil(t) % /Ot Ui(s)dUi(s) .

These extra components tells us how to interpret the method of
integration.



Rough path theory (Lyons ‘97)

Given a "rough path” U = (U, U) we can construct a solution

X(t) = X(0) + /0 " h(X())dU(s) + /0 " h(X(s))ds

Eg. 11f U= W and U= [ WdW is the Ito iterated integral,
then the constructed X is the solution to the lto SDE.

Eg. 21f U= W and U= [ W o dW is the Stratonovich iterated
integral, then the constructed X is the solution to the Stratonovich
SDE.



Rough path theory (Lyons ‘97)

Most importantly (for us) the map
o (U,U)— X

is an extension of the classical solution map and is continuous
with respect to the “rough path topology”.



Convergence of fast-slow systems

Returning to the slow variables

X.(t) = X.(0)+ /Ot< (5))dWi(s) + / F(X(s))ds
If we let .
- /0 Wi (r)d Wi (r)
then X. = (., WL.).

Due to the continuity of ®, if (W, W.) = (W, W), then X; = X,
where

mn:mm+AhW@MW@+AhW@ms

with W = (W, W),



Theorem (K. & Melbourne '14)

If the fast dynamics are mildly chaotic, then (W, W.) = (W, W)
where W is a Brownian motion and

Wi(t) = /Ot Wi(s)dWi(s) + A\t

where the integral is It6 type and
it [T E LY O) V(Y (5) ds
0

Covli(W)" =" /OOO E, {VI(Y(0)V(Y(5)+V(Y(0) v(Y(5)))} s



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics X. = X
where

dX = h(X)dW + (f )+ > ATokH (X)W (X )) dt .
ij,k

in Ité form, with \i* =" [ E,{v/(Y(0)) v/(Y(s))} ds

dX = h(X)odW + (f +) Miokh X)h"f(X)> dt

ij,k

in Stratonovich form, with

M= [ B {vI(Y(0)) V(Y (s)) — v(Y(0) vi(Y(s))} ds .



Proof | : Find a martingale

The strategy is to decompose
Ws(t) = Ma(t) + Ae(t)

where M. is a good martingale sequence (Kurtz-Protter 92)

(UE,ME,/UEd/\/Ig> = <U, W,/UdW>

where the integrals are of Itd type.

And A. — 0 uniformly, but oscillates rapidly. Hence A; is like a
corrector.



Proof Il : Martingale approximation (Gordin 69)

Introduce a Poincaré section A with Poincaré map T and return
times 7;. Write

=0 j=0

We have a CLT sum for a stationary random sequence {V/;} with
natural filtration F; = T~/ M (where M is the o-algebra for the
Y (0) probability space )



Proof Il : Martingale approximation (Gordin 69)

Use a martingale approximation to show that EZJ,-VE_I V= W.
Write \/j = Mj + (Zj — ZJ'+1) where E(MJ’.E) =0.

A good choice (if it converges) is the series

ZE J+k|‘7:

k=0

Convergence of this series is guaranteed by decay of correlations
for the Poincaré map.



Proof Il : Martingale approximation (Gordin 69)

The good martingale is M.(t) =¢ J'-sto_l M; and the corrector is
Ac(t) =e(Zo — Zn.—1) . We then get

N(s~2t)—1
We(t)=e > Mj+e(Zo— Zy.—1) = W(t)+0
j=0

by Martingale CLT and boundedness of Z.

We are sweeping a lot under the rug here since F; 2 Fji1. Need
to reverse the martingales.



Proof |ll: Computing the iterated integral

To compute W, we decompose it
/WadWE ://\/lgdl\/lg4—/MadA€4—/Agdl\/lg+/AgdA‘E
Since M. is a good martingale sequence

/MngE:/WdW /Agdl\/lE:>O.

Even though A. = O(g), the iterated term A.dA. does not vanish.
The last two terms are computed as ergodic averages

/MgdA€+/A5dA5 At (as)



Extensions 4+ Future directions

e The general fast-slow system (with h(x, y)) can be treated
with infinite dimensional rough paths (or alternatively, rough
flows - Bailleul+Catellier )

e Rough path tools can be adapted to address discrete-time
fast-slow maps.

e Fast-slow systems with feedback. Ergodic properties of Y X
are poorly understood.

e Stochastic PDE limits; regularity structures.
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All my slides are on my website (www.dtbkelly.com) Thank you!



