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Fast-slow systems

We consider fast-slow systems of the form

dX

dt
= εh(X ,Y ) + ε2f (X ,Y )

dY

dt
= g(Y ) ,

where ε� 1.

dY
dt = g(Y ) be some mildly chaotic ODE with state space Λ and

ergodic invariant measure µ. (eg. 3d Lorenz equations.)

h, f : Rn × Λ→ Rn and
∫

h(x , y) µ(dy) = 0.

Our aim is to find a reduced equation dX̄
dt = F (X̄ ) with X̄ ≈ X .



Fast-slow systems

If we rescale to large time scales we have

dXε
dt

= ε−1h(Xε,Yε) + f (Xε,Yε)

dYε

dt
= ε−2g(Yε) ,

We turn Xε into a random variable by taking Y (0) ∼ µ.

The aim is to characterise the distribution of the random path Xε
as ε→ 0.



Why is model reduction important?

1 - The reduced model is lower dimensional
and less stiff than the original fast-slow system.

2 - Helps the user make informed guess when
the model is unknown.



Fast-slow systems as SDEs

Consider the simplified slow equation

dXε
dt

= ε−1h(Xε)v(Yε) + f (Xε)

where h : Rn → Rn×d and v : Λ→ Rd with
∫

v(y)µ(dy) = 0.

If we write Wε(t) = ε−1
∫ t

0 v(Yε(s))ds then

Xε(t) = Xε(0) +

∫ t

0
h(Xε(s))dWε(s) +

∫ t

0
f (Xε(s))ds

where the integral is of Riemann-Stieltjes type (dWε = dWε
ds ds).



Invariance principle for Wε

We can write Wε as

Wε(t) = ε

∫ t/ε2

0
v(Y (s))ds = ε

bt/ε2c−1∑
j=0

∫ j+1

j
v(Y (s))ds

The assumptions on Y lead to decay of correlations for the
sequence

∫ j+1
j v(Y (s))ds.

For very general classes of chaotic Y , it is known that Wε ⇒W in
the sup-norm topology, where W is a multiple of Brownian motion.

We will call this class of Y mildly chaotic.



What about the SDE?

Since

Xε(t) = Xε(0) +

∫ t

0
h(Xε(s))dWε(s) +

∫ t

0
f (Xε(s))ds

This suggest a limiting SDE

X̄ (t) = X̄ (0) +

∫ t

0
h(X̄ (s)) ? dW (s) +

∫ t

0
f (X̄ (s))ds

But how should we interpret ?dW ? Stratonovich? Itô? neither?



For additive noise h(x) = I
the answer is simple.



Continuity with respect to noise (Sussmann ‘78)

Consider

X (t) = X (0) +

∫ t

0
dU(s) +

∫ t

0
f (X (s))ds ,

where U is a uniformly continuous path.

The above equation is well defined and moreover Φ : U → X is
continuous in the sup-norm topology.

Also works in the multiplicative noise case (h(X )dU) but only
when U is one dimensional.



The simple case (Melbourne, Stuart ‘11)

If the flow is mildly chaotic (Wε ⇒W ) then Xε ⇒ X̄ in the
sup-norm topology, where

dX̄ = dW + f (X̄ )ds .

In the multiplicative 1d noise case, the limit is Stratonovich

dX̄ = h(X̄ ) ◦ dW + f (X̄ )ds .



The strategy

The solution map takes “irregular path space” to “solution space”

Φ : Wε 7→ Xε

If this map were continuous then we could lift Wε ⇒W to
Xε ⇒ X .



When the noise is both
multidimensional and

multiplicative, this strategy fails.



Ito, Stratonovich and family

SDEs are very sensitive wrt approximations of BM.

Suppose
dX = h(X )dW + f (X )dt

and define an approximation

dX n = h(X n)dW n + f (X n)dt

with some approximation W n of W .

Taking n→∞, X n might converge to something completely
different to X . It all depends on the approximation W n.



Eg. 1 If W n is a step function approximation of W , then X n

converges to the Ito SDE

dX = h(X )dW + f (X )dt

Eg. 2 (Wong-Zakai) If W n is a linear interpolation of W , then X n

converges to the Stratonovich SDE

dX = h(X ) ◦ dW + f (X )dt

Eg. 3 (McShane, Sussman) If W n is a higher order interpolation
of W , we can get limits which are neither Ito nor Stratonovich.



It is not enough to know that
W n → BM .

We need more information.



Rough path theory (Lyons ‘97)

Provides a unified definition of a DE driven by a noisy path

X (t) = X (0) +

∫ t

0
h(X (s))dU(s) +

∫ t

0
h(X (s))ds

when the dU integral is not well defined.

In addition to U we must be given another path U : [0,T ]→ Rd×d

which is (formally) an iterated integral

Uij(t)
def
=

∫ t

0
U i (s)dU j(s) .

These extra components tells us how to interpret the method of
integration.



Rough path theory (Lyons ‘97)

Given a “rough path” U = (U,U) we can construct a solution

X (t) = X (0) +

∫ t

0
h(X (s))dU(s) +

∫ t

0
h(X (s))ds

Eg. 1 If U = W and U =
∫

W dW is the Ito iterated integral,
then the constructed X is the solution to the Ito SDE.

Eg. 2 If U = W and U =
∫

W ◦ dW is the Stratonovich iterated
integral, then the constructed X is the solution to the Stratonovich
SDE.



Rough path theory (Lyons ‘97)

Most importantly (for us) the map

Φ : (U,U) 7→ X

is an extension of the classical solution map and is continuous
with respect to the “rough path topology”.



Convergence of fast-slow systems

Returning to the slow variables

Xε(t) = Xε(0) +

∫ t

0
h(Xε(s))dWε(s) +

∫ t

0
f (Xε(s))ds

If we let

Wij
ε (t) =

∫ t

0
W i

ε(r)dW j
ε(r)

then Xε = Φ(Wε,Wε).

Due to the continuity of Φ, if (Wε,Wε)⇒ (W ,W), then Xε ⇒ X̄ ,
where

X̄ (t) = X̄ (0) +

∫ t

0
h(X̄ (s))dW(s) +

∫ t

0
h(X̄ (s))ds

with W = (W ,W).



Theorem (K. & Melbourne ’14)

If the fast dynamics are mildly chaotic, then (Wε,Wε)⇒ (W ,W)
where W is a Brownian motion and

Wij(t) =

∫ t

0
W i (s)dW j(s) + λij t

where the integral is Itô type and

λij“ = ”

∫ ∞
0

Eµ{v i (Y (0)) v j(Y (s))} ds .

Covij(W )“ = ”

∫ ∞
0

Eµ{v i (Y (0))v j(Y (s))+v j(Y (0)) v i (Y (s)))} ds



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics Xε ⇒ X̄
where

dX̄ = h(X̄ )dW +

f (X̄ ) +
∑
i ,j ,k

λij∂khi (X̄ )hkj(X̄ )

 dt .

in Itô form, with λij“ = ”
∫∞

0 Eµ{v i (Y (0)) v j(Y (s))} ds

dX̄ = h(X̄ ) ◦ dW +

f (X̄ ) +
∑
i ,j ,k

λij∂khi (X̄ )hkj(X̄ )

 dt

in Stratonovich form, with
λij“ = ”

∫∞
0 Eµ{v i (Y (0)) v j(Y (s))− v j(Y (0)) v i (Y (s))} ds .



General fast-slow systems I

What about the original (much more complicated)
fast-slow system?

dXε
dt

= ε−1h(Xε,Yε) + f (Xε,Yε)

dYε

dt
= ε−2g(Yε) .



General fast-slow systems II

The slow variables

Xε(t) = Xε(0) +

∫ t

0
ε−1h(Xε,Yε)ds +

∫ t

0
f (Xε,Yε)ds

can be written in the product form

Xε(t) = Xε(0) +

∫ t

0
H(Xε(s))dWε(s) +

∫ t

0
H(Xε(s))dVε(s)

H is the evaluation map (or Dirac distribution) H(x)ϕ = ϕ(x) for
ϕ : Rd → Rd suitably smooth. And Wε,Vε are the function
valued paths

Wε(t) = ε−1

∫ t

0
h(·,Yε(s))ds Vε(t) =

∫ t

0
f (·,Yε(s))ds



General fast-slow systems III

Theorem (K. & Melbourne ’14)

If the fast dynamics are mildly chaotic then Xε ⇒ X̄ where

dX̄ = σ(X̄ )dB + ã(X̄ )dt ,

where B is a standard BM on Rd and

ã(x) =

∫
f (x , y)dµ(y) +

d∑
k=1

B(hk(x , ·), ∂kh(x , ·))

σσT (x) = B(hi (x , ·), hj(x , ·)) + B(hj(x , ·), hi (x , ·))

and B is the “integrated autocorrelation” of the fast dynamics

B(v ,w)“ = ”

∫ ∞
0

Eµv(Y (0))w(Y (s))ds



The real world has feedback

It is more realistic to look fast-slow systems of the form

dXε
dt

= ε−1h(Xε,Yε) + f (Xε,Yε)

dYε

dt
= ε−2g(Yε) + εβ−2g0(Xε,Yε) ,

for some β ≥ 1. Since the coupling term is of lower order, this is
called weak feedback.

Back of the envelope: For β > 1, the reduced model is exactly
the same as the the zero feedback case.
For β = 1, an additional correction term appears, which involves
the weak feedback term g0.



The real world is infinite dimensional

Many fast-slow models are PDEs.

Suppose that Yε = (Y 1
ε ,Y

2
ε , . . . ) is an infinite vector of fast,

chaotic variables (possibly coupled). Can we identify a reduced
model for Xε = Xε(t, x) where

∂tXε = ∆Xε + ε−1H(Xε,Yε) + F (Xε,Yε)

This is a delicate question, since many natural approximations of
noise yield infinites in the limiting SPDE.

This is a problem for Hairer’s theory of regularity structures.
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All my slides are on my website (www.dtbkelly.com) Thank you!


