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Fast-slow systems

We consider fast-slow systems of the form

%): = eh(X, Y) + €2f(X, Y)
dy
_— = Y

where ¢ < 1.

% = g(Y) be some mildly chaotic ODE with state space A and
ergodic invariant measure p. (eg. 3d Lorenz equations.)

h,f :R" x A — R" and [ h(x,y) u(dy) = 0.

Our aim is to find a reduced equation 2X = F(X) with X ~ X.



Fast-slow systems

If we rescale to large time scales we have

dx.
= =°¢ Yh(Xe, Vo) + F(Xe, Ye)

dy.
dt =¢c g(YE)u

We turn X. into a random variable by taking Y (0) ~ p.
The aim is to characterise the distribution of the random path X

as ¢ — 0.



Why is model reduction important?

1 - The reduced model is lower dimensional
and less stiff than the original fast-slow system.
2 - Helps the user make informed guess when
the model is unknown.



Fast-slow systems as SDEs

Consider the simplified slow equation

dx.

i e Lh(X)v(Ye) + F(Xe)

where h: R" — R™9 and v : A — RY with [ v(y)u(dy) = 0.

If we write W, (t) = ¢! fo ))ds then

Xg(t)_Xg(O)+/0th(X5(s))dW€(s)+/0t F(X.(s))ds

where the integral is of Riemann-Stieltjes type (d W, = d;/;/a ds).



Invariance principle for W,

We can write W; as

[t/e?]-1

Ws(t):z—:/ot/ (Y(5)) s-ez /JHV(Y (s))ds

The assumptions on Y lead to decay of correlations for the
sequence fjJH v(Y(s))ds.

For very general classes of chaotic Y/, it is known that W, = W in
the sup-norm topology, where W is a multiple of Brownian motion.

We will call this class of Y mildly chaotic.



What about the SDE?

Since

t

X.(t) = X.(0) + /0 B(X.(s))dWe(s) + /O F(X.(5))ds

This suggest a limiting SDE

X(L‘):)_((O)+/0 h()_((s))ade(s)~|—/0 f(X(s))ds

But how should we interpret xd W ? Stratonovich? [t67 neither?



For additive noise h(x) =/
the answer is simple.



Continuity with respect to noise (Sussmann ‘78)

Consider

X(t) = (0)+/ /f

where U is a uniformly continuous path.

The above equation is well defined and moreover ¢ : U — X is
continuous in the sup-norm topology.



The simple case (Melbourne, Stuart ‘11)

If the flow is mildly chaotic (W, = W) then X. = X in the
sup-norm topology, where

dX =dW + f(X)ds .

Same idea works for general h provided n = d = 1. The limit is

Stratonovich B B B
dX = h(X)odW + f(X)ds .



The strategy

The solution map takes “noisy path space” to “solution space”
b W, — X

If this map were continuous then we could lift W, = W to
X: = X.



When the noise is both
multidimensional and
multiplicative, this strategy fails.



Ito, Stratonovich and family

SDEs are very sensitive wrt approximations of BM.

Suppose
dX = h(X)dW + f(X)dt

and define an approximation
dXn, = h(Xp)dW,+ f(Xp)dt

with some approximation W, of W.

Taking n — 0o, X, might converge to something completely
different to X. It all depends on the approximation W/,,.



Eg. 1 If W, is a step function approximation of W, then X,
converges to the Ito SDE

dX = h(X)dW + f(X)dt

Eg. 2 (Wong-Zakai) If W, is a linear interpolation of W, then X,
converges to the Stratonovich SDE

dX = h(X) o dW + £(X)dt

Eg. 3 (Sussman) If W, is a higher order spline interpolation of
W, we can get limits which are neither Ito nor Stratonovich.



It is not enough to know that
W, — BM.

We need more information.



Rough path theory (Lyons ‘97)

Provides a unified definition of a DE driven by a noisy path

X(t) = X(0) + /O Ch(X(5))dU(s) + /0 " h(X(s))ds

when the dU integral is not well defined.

In addition to U we must be given another path U : [0, T] — R9*¢
which is (formally) an iterated integral

wil(t) % /Ot Ui(s)dUi(s) .

These extra components tells us how to interpret the method of
integration.



Rough path theory (Lyons ‘97)

Given a "rough path” U = (U, U) we can construct a solution

X(t) = X(0) + /0 " h(X())dU(s) + /0 " h(X(s))ds

Eg. 11f U= W and U= [ WdW is the Ito iterated integral,
then the constructed X is the solution to the lto SDE.

Eg. 21f U= W and U= [ W o dW is the Stratonovich iterated
integral, then the constructed X is the solution to the Stratonovich
SDE.



Rough path theory (Lyons ‘97)

Most importantly (for us) the map
o (U,U)— X

is an extension of the classical solution map and is continuous
with respect to the “rough path topology”.



Convergence of fast-slow systems

Returning to the slow variables

X.(t) = X.(0)+ /Ot< (5))dWi(s) + / F(X(s))ds
If we let .
- /0 Wi (r)d Wi (r)
then X. = (., WL.).

Due to the continuity of ®, if (W, W.) = (W, W), then X. = X,
where

mn:mm+AhW@MW@+AhW@ms

with W = (W, W),



Theorem (K. & Melbourne '14)

If the fast dynamics are mildly chaotic, then (W, W.) = (W, W)
where W is a Brownian motion and

Wi(t) = /Ot Wi(s)dWi(s) + A\t

where the integral is It6 type and
it [T E LY O) V(Y (5) ds
0

Covli(W)" =" /OOO E, {VI(Y(0)V(Y(5)+V(Y(0) v(Y(5)))} s



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics X. = X
where

dX = h(X)dW + (f )+ > ATokK (X)h (X )) dt .
ij,k

in Ité form, with \i* =" [ E,{v/(Y(0)) v/(Y(s))} ds

dX = h(X)odW + (f +) Miokh X)h"f(X)> dt

i,k

in Stratonovich form, with

M= [ B {vI(Y(0)) V(Y (s)) — v(Y(0) vi(Y(s))} ds .



General fast-slow systems |

What about the original (much more complicated)
fast-slow system?
dX
S = Th(X., Yo) + F(X., Vo)

dt
dY-

dt

=c%g(Y.).




General fast-slow systems Il
The slow variables
t t
X.(t) = X.(0) +/ e h(X., Y.)ds +/ F(X., Y.)ds
0 0
can be written in the product form
t t
X(6) = X(0) + [ HOU()AWA(s) + | HOX()dV(s)
0 0
H is the evaluation map (or Dirac distribution) H(x)y = ¢(x) for

p: R - RY suitably smooth. And W,, V. are the function
valued paths

Wa(t):sl/ot B, Yo(s))ds Ve(t):/ot £, Yo(s))ds



General fast-slow systems Il|

Theorem (K. & Melbourne '14)
If the fast dynamics are mildly chaotic then X. = X where

dX = o(X)dB + 3(X)dt ,

where B is a standard BM on R? and

d
3(x) = / Fx, y)duly) + 3 B(H(x, ), Beh(x, )
k=1
JUT(X) = %(hi(Xa ')’ hj(X7 )) + sB(hj(xv ')a hi(Xa ))

and ‘B is the “integrated autocorrelation” of the fast dynamics

B(v,w)" =" /000 E,v(Y(0))w(Y(s))ds



The real world has feedback

It is more realistic to look fast-slow systems of the form

X
dd: = th(X., Yo) + F(X, Ye)
dY, B _

df = 2g(Y:) + " 2g0( Xz, Ye)

for some B > 1. Since the coupling term is of lower order, this is
called weak feedback.

Back of the envelope: For § > 1, the reduced model is exactly
the same as the the zero feedback case.

For 8 =1, an additional correction term appears, which involves
the weak feedback term gp.



The real world is infinite dimensional

Many fast-slow models are PDEs.

Suppose that Y. = (Y2, Y2,...) is an infinite vector of fast,
chaotic variables (possibly coupled). Can we identify a reduced
model for X; = X(t, x) where

O Xe = AXc + e TH(X., Ye) + F(Xe, Ye)

This is a delicate question, since many natural approximations of
noise yield infinites in the limiting SPDE.

This is a problem for Hairer's theory of regularity structures.
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All my slides are on my website (www.dtbkelly.com) Thank you!



