Fast-slow systems with chaotic noise

David Kelly Ian Melbourne

Department of Mathematics University of North Carolina

Chapel Hill NC
www.dtbkelly.com

March 28, 2014

Probability seminar, Université Paris Dauphine.

Outline

Two problems :
1 - Fast-slow systems in continuous time
2 - Fast-slow systems in discrete time

Fast-slow systems in continuous time

Let $\dot{Y}=g(Y)$ be some chaotic ODE with state space Λ and invariant measure μ. We consider fast-slow systems of the form

$$
\begin{aligned}
\frac{d X^{(\varepsilon)}}{d t} & =\varepsilon^{-1} h\left(X^{(\varepsilon)}, Y^{(\varepsilon)}\right)+f\left(X^{(\varepsilon)}, Y^{(\varepsilon)}\right) \\
\frac{d Y^{(\varepsilon)}}{d t} & =\varepsilon^{-2} g\left(Y^{(\varepsilon)}\right)
\end{aligned}
$$

where $\varepsilon \ll 1$ and $h, f: \mathbb{R}^{e} \times \Lambda \rightarrow \mathbb{R}^{e}$ and $\int h(\cdot, y) \mu(d y)=0$. Also assume that $Y(0) \sim \mu$.

The aim is to characterize the distribution of $X^{(\varepsilon)}$ as $\varepsilon \rightarrow 0$.

Fast-slow systems as SDEs

Consider the simplified slow equation

$$
\frac{d X^{(\varepsilon)}}{d t}=\varepsilon^{-1} h\left(X^{(\varepsilon)}\right) v\left(Y^{(\varepsilon)}\right)+f\left(X^{(\varepsilon)}\right)
$$

where $h: \mathbb{R}^{e} \rightarrow \mathbb{R}^{e \times d}$ and $v: \Lambda \rightarrow \mathbb{R}^{d}$ with $\int v(y) \mu(d y)=0$.
If we write $W^{(\varepsilon)}(t)=\varepsilon^{-1} \int_{0}^{t} v\left(Y^{(\varepsilon)}(s)\right) d s$ then

$$
X^{(\varepsilon)}(t)=X^{(\varepsilon)}(0)+\int_{0}^{t} h\left(X^{(\varepsilon)}(s)\right) d W^{(\varepsilon)}(s)+\int_{0}^{t} f\left(X^{(\varepsilon)}(s)\right) d s
$$

where the integral is of Riemann-Lebesgue type.

Invariance principle for $W^{(\varepsilon)}$

We can write $W^{(\varepsilon)}$ as

$$
W^{(\varepsilon)}(t)=\varepsilon \int_{0}^{t / \varepsilon^{2}} v(Y(s)) d s=\varepsilon \sum_{j=0}^{\left\lfloor t / \varepsilon^{2}\right\rfloor-1} \int_{j}^{j+1} v(Y(s)) d s
$$

The assumptions on Y lead to decay of correlations for the sequence $\int_{j}^{j+1} v(Y(s)) d s$.

One can show that $W^{(\varepsilon)} \Rightarrow W$ in the sup-norm topology, where W is a multiple of Brownian motion.

What about the SDE?

Since

$$
X^{(\varepsilon)}(t)=X^{(\varepsilon)}(0)+\int_{0}^{t} h\left(X^{(\varepsilon)}(s)\right) d W^{(\varepsilon)}(s)+\int_{0}^{t} f\left(X^{(\varepsilon)}(s)\right) d s
$$

This suggest a limiting SDE

$$
X(t)=X(0)+\int_{0}^{t} h(X(s)) \star d W(s)+\int_{0}^{t} f(X(s)) d s
$$

But how should we interpret $\star d W$?

Continuity with respect to noise (Sussmann '78)

Suppose that

$$
X(t)=X(0)+\int_{0}^{t} h(X(s)) d U(s)+\int_{0}^{t} f(X(s)) d s
$$

where U is a smooth path.
If $d=1$ or $h(x)=I d$ for all x, then $\Phi: U \rightarrow X$ is continuous in the sup-norm topology.

The simple case (Melbourne, Stuart '11)

If the flow is chaotic enough so that

$$
W^{(\varepsilon)} \Rightarrow W
$$

and either $d=1$ or $h=\operatorname{Id}$
then we have that $X^{(\varepsilon)} \Rightarrow X$ in the sup-norm topology, where

$$
d X=h(X) \circ d W+f(X) d s
$$

where the stochastic integral is of Stratonovich type.

This famously falls apart when the noise is both multidimensional and multiplicative. That is, when $d>1$ and $h \neq l d$.

Continuity with respect to rough paths (Lyons '97)

As above, let

$$
X(t)=\int_{0}^{t} h(X(s)) d U(s)+\int_{0}^{t} F(X(s)) d s
$$

where U is a smooth path. Let $\mathbb{U}:[0, T] \rightarrow \mathbb{R}^{d \times d}$ be defined by

$$
\mathbb{U}^{\alpha \beta}(t) \stackrel{\text { def }}{=} \int_{0}^{t} U^{\alpha}(s) d U^{\beta}(s)
$$

Then the map

$$
\Phi:(U, \mathbb{U}) \mapsto X
$$

is continuous with respect to the " ρ_{γ} topology". We call this the rough path topology.

The rough path topology

The ρ_{γ} topology is an extension of the γ-Hölder topology to the space of objects of the form (U, \mathbb{U}) ie. the space of rough paths. It has a metric

$$
\rho_{\gamma}(U, \mathbb{U}, V, \mathbb{V})=\sup _{s, t \in[0, T]}\left(\frac{|U(s, t)-V(s, t)|}{|s-t|^{\gamma}}+\frac{|\mathbb{U}(s, t)-\mathbb{V}(s, t)|}{|s-t|^{2 \gamma}}\right)
$$

where

$$
U(s, t)=U(t)-U(s) \quad \text { and } \quad \mathbb{U}^{\beta \gamma}(s, t)=\int_{s}^{t} U^{\beta}(s, r) d U^{\gamma}(r)
$$

In particular, it is stronger than the sup-norm topology.

A general theorem for continuous fast-slow systems

$$
\text { Let } \mathbb{W}^{(\varepsilon), \alpha \beta}(t)=\int_{0}^{t} W^{(\varepsilon), \alpha}(s) d W^{(\varepsilon), \beta}(s)
$$

Suppose that $\left(W^{(\varepsilon)}, \mathbb{W}^{(\varepsilon)}\right) \Rightarrow(W, \mathbb{W})$ in the sup-norm topology where W is Brownian motion and

$$
\mathbb{W}^{\alpha \beta}(t)=\int_{0}^{t} W^{\alpha}(s) \circ d W^{\beta}(s)+\lambda^{\alpha \beta} t
$$

where $\lambda \in \mathbb{R}^{d \times d}$ and that $\left(W^{(\varepsilon)}, \mathbb{W}^{(\varepsilon)}\right)$ satisfy the tightness estimates.

Then $X^{(\varepsilon)} \Rightarrow X$ in the sup norm topology, where

$$
d X=h(X) \circ d W+\left(f(X)+\sum_{i, j, k} \lambda^{i k} \partial^{j} h^{i}(X) h_{j}^{k}(X)\right) d t
$$

Tightness estimates

To lift a sup-norm invariance principle to a ρ_{γ} invariance principle, we use the Kolmogorov criterion. Let

$$
\begin{aligned}
W^{(\varepsilon)}(s, t) & =W^{(\varepsilon)}(t)-W^{(\varepsilon)}(s) \\
\mathbb{W}^{(\varepsilon), \alpha \beta}(s, t) & =\int_{s}^{t} W^{(\varepsilon), \alpha}(s, r) d W^{(\varepsilon), \beta}(r)
\end{aligned}
$$

The tightness estimates are of the form

$$
\left(\mathbf{E}_{\mu}\left|W^{(\varepsilon)}(s, t)\right|^{q}\right)^{1 / q} \lesssim|t-s|^{\alpha} \text { and }\left(\mathbf{E}_{\mu}|\mathbb{W}(\varepsilon)(s, t)|^{q / 2}\right)^{2 / q} \lesssim|t-s|^{2 \alpha}
$$ for q large enough and $\alpha>1 / 3$.

We have the following result

Theorem (K, Melbourne '14)
If the fast dynamics are "sufficiently chaotic", then
$\left(W^{(\varepsilon)}, \mathbb{W}^{(\varepsilon)}\right) \Rightarrow(W, \mathbb{W})$ where W is a Brownian motion and

$$
\mathbb{W}^{\alpha \beta}(t)=\int_{0}^{t} W^{\alpha}(s) \circ d W^{\beta}(s)+\frac{1}{2} \lambda^{\alpha \beta} t
$$

where

$$
\lambda^{\beta \gamma}=\int_{0}^{\infty} \mathbf{E}_{\mu}\left(v^{\beta} v^{\gamma}(Y(s))-v^{\beta}(Y(s)) v^{\gamma}\right) d s
$$

Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics $X^{(\varepsilon)} \Rightarrow X$ where

$$
d X=h(X) \circ d W+\left(f(X)+\sum_{i, j, k} \lambda^{i k} \partial^{j} h^{i}(X) h_{j}^{k}(X)\right) d t
$$

Rmk. The only case where one gets Stratonovich is when the Auto-correlation is symmetric. For instance, if the flow is reversible.

Now let's try discrete time ...

Discrete time fast-slow systems

Suppose that $T: \Lambda \rightarrow \Lambda$ is a chaotic map with invariant measure μ. We consider the discrete fast-slow system

$$
X_{j+1}^{(n)}=X_{j}^{(n)}+n^{-1 / 2} h\left(X_{j}^{(n)}, T^{j}\right)+n^{-1} f\left(X_{j}^{(n)}, T^{j}\right)
$$

Now define the path $X^{(n)}(t)=X_{\lfloor n t\rfloor}^{(n)}$.
The aim is to characterize the distribution of the path $X^{(n)}$ as $n \rightarrow \infty$.

Fast-slow systems as SDEs

Lets again simplify the slow equation to

$$
X_{j+1}^{(n)}=X_{j}^{(n)}+n^{-1 / 2} h\left(X_{j}^{(n)}\right) v\left(T^{j}\right)
$$

If we sum these up, we get

$$
X^{(n)}(t)=X^{(n)}(0)+\sum_{j=0}^{\lfloor n t\rfloor-1} h\left(X_{j}^{(n)}\right) \frac{v\left(T^{j}\right)}{n^{1 / 2}}
$$

If we write $W^{(n)}(t)=n^{-1 / 2} \sum_{j=0}^{\lfloor n t\rfloor-1} v\left(T^{j}\right)$ then the path $X^{(n)}(t)$ satisfies

$$
X^{(n)}(t)=X(0)+\int_{0}^{t} h\left(X^{(n)}(s-)\right) d W^{(n)}(s)
$$

where the integral is defined in the "left-Riemann sum" sense.

Invariance principle

$$
W^{(n)}(t)=n^{-1 / 2} \sum_{j=0}^{\lfloor n t\rfloor-1} v\left(T^{j}\right)
$$

We still have that $W^{(n)} \Rightarrow W$ in the Skorokhod topology, where W is a multiple of Brownian motion.
But $W^{(n)}$ is a step function ... so RPT doesn't really work... even if it did, you'll never satisfy the tightness estimates.

A general theorem for discrete fast-slow systems (K 14')
Let

$$
\mathbb{W}^{(n), \alpha \beta}(t)=n_{0 \leq i<j<\lfloor n t\rfloor} v^{\alpha}\left(T^{i}\right) v^{\beta}\left(T^{j}\right)
$$

Suppose that $\left(W^{(n)}, \mathbb{W}^{(n)}\right) \Rightarrow(W, \mathbb{W})$ in the Skorokhod topology where W is Brownian motion and

$$
\mathbb{W}^{\alpha \beta}(t)=\int_{0}^{t} W^{\alpha}(s) \circ d W^{\beta}(s)+\lambda^{\alpha \beta} t
$$

where $\lambda \in \mathbb{R}^{d \times d}$ and that $\left(W^{(n)}, \mathbb{W}^{(n)}\right)$ satisfy the discrete tightness estimates.
Then $X^{(n)} \Rightarrow X$ in the Skorokhod topology, where

$$
d X(t)=h(X) \circ d W+\sum_{i, j, k} \lambda^{i k} \partial^{j} h^{i}(X) h_{j}^{k}(X) d t
$$

Discrete tightness estimates

The discrete tightness estimates are a courser version of the Kolmogorov criterion. Let

$$
\begin{aligned}
W^{(n), \alpha}(s, t) & =n^{-1 / 2} \sum_{\lfloor n s\rfloor \leq i<\lfloor n t\rfloor} v^{\alpha}\left(T^{i}\right) \\
\mathbb{W}^{(n), \alpha \beta}(s, t) & =n^{-1} \sum_{\lfloor n s\rfloor \leq i<j<\lfloor n t\rfloor} v^{\alpha}\left(T^{i}\right) v^{\beta}\left(T^{j}\right)
\end{aligned}
$$

Then the discrete tightness estimates are of the form

$$
\begin{aligned}
&\left(\mathbf{E}_{\mu}\left|W^{(n)}\left(\frac{j}{n}, \frac{k}{n}\right)\right|^{q}\right)^{1 / q} \\
& \lesssim\left|\frac{j-k}{n}\right|^{\alpha} \text { and } \\
&\left(\mathbf{E}_{\mu}\left|\mathbb{W}^{(n)}\left(\frac{j}{n}, \frac{k}{n}\right)\right|^{q / 2}\right)^{2 / q} \lesssim\left|\frac{j-k}{n}\right|^{2 \alpha}
\end{aligned}
$$

for all $j, k=0, \ldots, n$, for q large enough and $\alpha>1 / 3$.

We have the following result

Theorem (K, Melbourne '14)
If the fast dynamics are "sufficiently chaotic", then $\left(W^{(n)}, \mathbb{W}^{(n)}\right) \Rightarrow(W, \mathbb{W})$ in the Skorokhod topology, where W is a Brownian motion and

$$
\mathbb{W}^{\alpha \beta}(t)=\int_{0}^{t} W^{\alpha}(s) \circ d W^{\beta}(s)+\frac{1}{2} \kappa^{\alpha \beta} t
$$

where

$$
\kappa^{\alpha \beta}=\sum_{j=1}^{\infty} \mathbf{E}_{\mu} v^{\alpha} v^{\beta}\left(T^{j}\right)
$$

Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics $X^{(n)} \Rightarrow X$ where

$$
d X=h(X) \circ d W+\sum_{i, j, k} \frac{1}{2} \kappa^{j k} \partial^{i} h^{j}(X) h^{i k}(X) d t
$$

Idea of proof

Recall that

$$
X_{j+1}^{(n)}=X_{j}^{(n)}+n^{-1 / 2} h\left(X_{j}^{(n)}\right) v\left(T^{j}\right)
$$

The idea is to approximate $X^{(n)}(t)=X_{\lfloor n t\rfloor}^{(n)}$ by $\tilde{X}^{(n)}(t)$, which solves an equation driven by smooth paths.

Idea of proof

This can be achieved by finding a (piecewise smooth) rough path $\tilde{W}^{(n)}=\left(\tilde{W}^{(n)}, \tilde{\mathbb{W}}^{(n)}\right)$ such that

$$
\left(\tilde{W}^{(n)}\left(\frac{j}{n}\right), \tilde{W}^{(n)}\left(\frac{j}{n}\right)\right)=\left(W^{(n)}\left(\frac{j}{n}\right), \mathbb{W}^{(n)}\left(\frac{j}{n}\right)\right)
$$

for all $j=0, \ldots, n$ and which is Lipschitz in between mesh points.
Then define

$$
\tilde{X}^{(n)}(t)=X(0)+\int_{0}^{t} h\left(\tilde{X}^{(n)}(s)\right) d \tilde{W}^{(n)}(s)
$$

Idea of proof

Alternatively we can write

$$
\begin{aligned}
\tilde{X}^{(n)}(t) & =X(0)+\int_{0}^{t} h\left(\tilde{X}^{(n)}(s)\right) d \tilde{W}^{(n)}(s) \\
& +\sum_{i, j, k} \int_{0}^{t} \frac{1}{2} \partial^{i} h^{j}(X) h^{i k}(X) d Z^{(n), j k}(s)
\end{aligned}
$$

where $Z^{(n)}$ is a piecewise smooth path.

Idea of proof

By construction, $\tilde{X}^{(n)}$ is a good approximation of $X^{(n)}$.

Proposition

We have that

$$
\sup _{j=0 \ldots n}\left|X^{(n)}(j / n)-\tilde{X}^{(n)}(j / n)\right| \lesssim K_{n, \gamma} n^{1-3 \gamma},
$$

for any $\gamma \in(1 / 3,1 / 2]$, where the constant $K_{n, \gamma}$ depends on n through the "discrete Hölder norms" of $\left(W^{(n)}, \mathbb{W}^{(n)}\right)$.

As a consequence, if $\tilde{X}^{(n)} \Rightarrow X$ then $X^{(n)} \Rightarrow X$.

Idea of proof

But since $\tilde{X}^{(n)}$ is driven by smooth paths, we can apply the ideas from the first half of the talk.

But again by construction...

- If $\left(W^{(n)}, \mathbb{W}^{(n)}\right) \Rightarrow(W, \mathbb{W})$ in the Skorokhod topology then $\left(\tilde{W}^{(n)}, \tilde{W}^{(n)}\right) \Rightarrow(W, \mathbb{W})$ in the sup-norm topology.
- If $\left(W^{(n)}, \mathbb{W}{ }^{(n)}\right)$ satisfy the discrete tightness estimates, then ($\left.\tilde{W}^{(n)}, \tilde{W}^{(n)}\right)$ satisfy the continuous tightness estimates.

Thus $\tilde{X}^{(n)} \Rightarrow X$.

