Fast-slow systems with chaotic noise

David Kelly Ian Melbourne

Courant Institute New York University New York NY www.dtbkelly.com

November 20, 2014

Math Colloquium, University of Minnesota.

Fast-slow systems

Let $\frac{dY}{dt} = g(Y)$ be some 'mildly chaotic' ODE with state space Λ and ergodic invariant measure μ . (eg. 3d Lorenz equations.)

We consider fast-slow systems of the form

$$\begin{aligned} \frac{dX}{dt} &= \varepsilon h(X, Y) + \varepsilon^2 f(X, Y) \\ \frac{dY}{dt} &= g(Y) , \end{aligned}$$

where $\varepsilon \ll 1$ and $h, f : \mathbb{R}^n \times \Lambda \to \mathbb{R}^n$ and $\int h(x, y) \mu(dy) = 0$. Our aim is to find a **reduced equation** $\frac{d\bar{X}}{dt} = F(\bar{X})$ with $\bar{X} \approx X$.

Fast-slow systems

If we rescale to large time scales we have

$$\begin{split} \frac{dX^{(\varepsilon)}}{dt} &= \varepsilon^{-1}h(X^{(\varepsilon)}, \mathbf{Y}^{(\varepsilon)}) + f(X^{(\varepsilon)}, \mathbf{Y}^{(\varepsilon)}) \\ \frac{d\mathbf{Y}^{(\varepsilon)}}{dt} &= \varepsilon^{-2}g(\mathbf{Y}^{(\varepsilon)}) \;, \end{split}$$

We turn $X^{(\varepsilon)}$ into a random variable by taking $Y(0) \sim \mu$. The aim is to characterise the **distribution** of the random path $X^{(\varepsilon)}$ as $\varepsilon \to 0$.

Fast-slow systems as SDEs

Consider the simplified slow equation

$$\frac{dX^{(\varepsilon)}}{dt} = \varepsilon^{-1}h(X^{(\varepsilon)})v(Y^{(\varepsilon)}) + f(X^{(\varepsilon)})$$

where $h : \mathbb{R}^n \to \mathbb{R}^{n \times d}$ and $v : \Lambda \to \mathbb{R}^d$ with $\int v(y)\mu(dy) = 0$. If we write $W^{(\varepsilon)}(t) = \varepsilon^{-1} \int_0^t v(Y^{(\varepsilon)}(s)) ds$ then

$$X^{(\varepsilon)}(t) = X^{(\varepsilon)}(0) + \int_0^t h(X^{(\varepsilon)}(s)) dW^{(\varepsilon)}(s) + \int_0^t f(X^{(\varepsilon)}(s)) ds$$

where the integral is of Riemann-Lebesgue type $\left(d\frac{W^{(\varepsilon)}}{ds} = \frac{dW^{(\varepsilon)}}{ds}ds\right)$.

Invariance principle for $W^{(\varepsilon)}$

We can write $W^{(\varepsilon)}$ as

$$W^{(\varepsilon)}(t) = \varepsilon \int_0^{t/\varepsilon^2} v(Y(s)) ds = \varepsilon \sum_{j=0}^{\lfloor t/\varepsilon^2
floor -1} \int_j^{j+1} v(Y(s)) ds$$

The assumptions on Y lead to decay of correlations for the sequence $\int_{i}^{j+1} v(Y(s)) ds$.

For very general classes of chaotic Y, it is known that $W^{(\varepsilon)} \Rightarrow W$ in the sup-norm topology, where W is a multiple of Brownian motion.

What about the SDE?

Since

$$X^{(\varepsilon)}(t) = X^{(\varepsilon)}(0) + \int_0^t h(X^{(\varepsilon)}(s)) dW^{(\varepsilon)}(s) + \int_0^t f(X^{(\varepsilon)}(s)) ds$$

This suggest a limiting SDE

$$\bar{X}(t) = \bar{X}(0) + \int_0^t h(\bar{X}(s)) \star dW(s) + \int_0^t f(\bar{X}(s)) ds$$

But how should we interpret $\star dW$? Stratonovich? Itô? neither?

Continuity with respect to noise (Sussmann '78)

Suppose that

$$X(t) = X(0) + \int_0^t h(X(s)) dU(s) + \int_0^t f(X(s)) ds$$

where U is a uniformly continuous path.

If $h(x) \equiv Id$ or n = d = 1, then the above equation is well defined and moreover $\Phi : U \to X$ is continuous in the sup-norm topology. The simple case (Melbourne, Stuart '11)

If the flow is chaotic enough so that

 $W^{(\varepsilon)} \Rightarrow W$,

and $h \equiv \text{Id or } n = d = 1$

then we have that $X^{(\varepsilon)} \Rightarrow X$ in the sup-norm topology, where

$$d\overline{X} = h(\overline{X}) \circ dW + f(\overline{X})ds$$
,

where the stochastic integral is of Stratonovich type.

Continuity of the solution map

The solution map takes "noisy path space" to "solution space"

 $\Phi: \mathbf{W}^{(\varepsilon)} \mapsto \mathbf{X}^{(\varepsilon)}$

If this map were **continuous** then we could lift $W^{(\varepsilon)} \Rightarrow W$ to $X^{(\varepsilon)} \Rightarrow X$.

When the noise is both **multidimensional** and **multiplicative**, this strategy fails.

Continuity of the solution map

We want to define a map $\Phi: U \to X$ where U is a noisy path and

$$X(t) = X(0) + \int_0^t h(X(s)) dU(s) + \int_0^t f(X(s)) ds$$

This is problematic for two reasons.

1 - The solution map Φ is only defined for *differentiable* noise. But noisy paths like Brownian motion are **not differentiable** (they are *almost* 1/2-Hölder).

2 - Any attempt to define an extension of Φ to Brownian-like objects will **fail to be continuous**. ie. We can find a sequence $W_n \Rightarrow W$ but $\Phi(W_n) \not\Rightarrow \Phi(W)$.

To build a continuous solution map, we need **extra information** about U.

Rough path theory (Lyons '97)

Suppose we are given a path $\mathbb{U} : [0, T] \to \mathbb{R}^{d \times d}$ which is (formally) an iterated integral

$$\mathbb{U}^{ij}(t) \stackrel{def}{=} \int_0^t \frac{U^i(s)dU^j(s)}{U^i(s)} dU^j(s) \ .$$

Given a "rough path" $U = (U, \mathbb{U})$ we can construct a solution

$$X(t) = X(0) + \int_0^t h(X(s)) d\mathbf{U}(s) + \int_0^t h(X(s)) ds$$

The map

$$\Phi:(\textbf{\textit{U}},\mathbb{U})\mapsto\textbf{\textit{X}}$$

is an extension of the classical solution map and is **continuous** with respect to the "rough path topology".

Convergence of fast-slow systems

If we let

$$\mathbb{W}^{ij,(\varepsilon)}(t) = \int_0^t W^{i,(\varepsilon)}(r) dW^{j,(\varepsilon)}(r)$$

then $X^{(\varepsilon)} = \Phi(W^{(\varepsilon)}, W^{(\varepsilon)}).$

Due to the continuity of Φ , if $(\mathcal{W}^{(\varepsilon)}, \mathbb{W}^{(\varepsilon)}) \Rightarrow (\mathcal{W}, \mathbb{W})$, then $X^{(\varepsilon)} \Rightarrow \overline{X}$, where

$$ar{X}(t) = ar{X}(0) + \int_0^t h(ar{X}(s)) d\mathbf{W}(s) + \int_0^t h(ar{X}(s)) ds$$

with $\mathbf{W} = (\mathbf{W}, \mathbf{W}).$

We have the following result

Theorem (K. & Melbourne '14)

If the fast dynamics are 'mildly chaotic', then $(W^{(\varepsilon)}, W^{(\varepsilon)}) \Rightarrow (W, W)$ where W is a Brownian motion and

$$\mathbb{W}^{ij}(t) = \int_0^t W^i(s) dW^j(s) + \lambda^{ij} t$$

where the integral is Itô type and

$$\lambda^{ij} = \int_0^\infty \mathbf{E}_\mu \{ v^i(\mathbf{Y}(0)) \, v^j(\mathbf{Y}(s)) \} \, ds \; .$$

 $\operatorname{Cov}^{ij}(\boldsymbol{W})^{"} = "\int_0^\infty \mathbf{E}_{\mu} \{ v^i(\boldsymbol{Y}(0)) v^j(\boldsymbol{Y}(s)) + v^j(\boldsymbol{Y}(0)) v^i(\boldsymbol{Y}(s)) \} ds$

Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics $X^{(\varepsilon)} \Rightarrow \bar{X}$ where

$$d\bar{X} = h(\bar{X})dW + \left(f(\bar{X}) + \sum_{i,j,k} \lambda^{ij} \partial^k h^i(\bar{X}) h^{kj}(\bar{X})\right) dt$$
.

in Itô form, with λ^{ij} " = " $\int_0^\infty \mathbf{E}_\mu \{ v^i(\mathbf{Y}(0)) v^j(\mathbf{Y}(s)) \} ds$

$$d\bar{X} = h(\bar{X}) \circ dW + \left(f(\bar{X}) + \sum_{i,j,k} \lambda^{ij} \partial^k h^i(\bar{X}) h^{kj}(\bar{X})\right) dt$$

in Stratonovich form, with $\lambda^{ij} = \int_0^\infty \mathbf{E}_{\mu} \{ v^i(\mathbf{Y}(0)) v^j(\mathbf{Y}(s)) - v^j(\mathbf{Y}(0)) v^i(\mathbf{Y}(s)) \} ds .$ What about the original (much more complicated) fast-slow system?

$$\begin{split} \frac{d\boldsymbol{X}^{(\varepsilon)}}{dt} &= \varepsilon^{-1}h(\boldsymbol{X}^{(\varepsilon)}, \boldsymbol{Y}^{(\varepsilon)}) + f(\boldsymbol{X}^{(\varepsilon)}, \boldsymbol{Y}^{(\varepsilon)}) \\ \frac{d\boldsymbol{Y}^{(\varepsilon)}}{dt} &= \varepsilon^{-2}g(\boldsymbol{Y}^{(\varepsilon)}) \;. \end{split}$$

General fast-slow systems II

0

Theorem (K. & Melbourne '14) If the fast dynamics are "sufficiently chaotic" then $X^{(\varepsilon)} \Rightarrow \bar{X}$ where

$$d\overline{X} = \sigma(\overline{X})dB + \widetilde{a}(\overline{X})dt$$
,

where **B** is a standard BM on \mathbb{R}^d and

$$\tilde{a}(x) = \int f(x, y) d\mu(y) + \sum_{k=1}^{d} \mathfrak{B}(h^{k}(x, \cdot), \partial_{k}h(x, \cdot))$$
$$\pi \sigma^{T}(x) = \mathfrak{B}(h^{i}(x, \cdot), h^{j}(x, \cdot)) + \mathfrak{B}(h^{j}(x, \cdot), h^{i}(x, \cdot))$$

and \mathfrak{B} is the "integrated autocorrelation" of the fast dynamics

$$\mathfrak{B}(v,w)^{"} = "\int_0^\infty \mathsf{E}_{\mu} v(\mathsf{Y}(0)) w(\mathsf{Y}(s)) ds$$

The future?

The real world has feedback

It is more realistic to look fast-slow systems of the form

$$\begin{split} \frac{dX^{(\varepsilon)}}{dt} &= \varepsilon^{-1}h(X^{(\varepsilon)}, \mathbf{Y}^{(\varepsilon)}) + f(X^{(\varepsilon)}, \mathbf{Y}^{(\varepsilon)}) \\ \frac{d\mathbf{Y}^{(\varepsilon)}}{dt} &= \varepsilon^{-2}g(\mathbf{Y}^{(\varepsilon)}) + \varepsilon^{\beta-2}g_0(X^{(\varepsilon)}, \mathbf{Y}^{(\varepsilon)}) \;, \end{split}$$

for some $\beta \geq 1$. Since the coupling term is of lower order, this is called **weak feedback**.

Back of the envelope: For $\beta > 1$, the reduced model is exactly the same as the the zero feedback case. For $\beta = 1$, an additional correction term appears, which involves the weak feedback term g_0 .

The real world is infinite dimensional

Many fast-slow models are **PDEs**.

Suppose that $\mathbf{Y}^{(\varepsilon)} = (\mathbf{Y}_1^{(\varepsilon)}, \mathbf{Y}_2^{(\varepsilon)}, \dots)$ is an infinite vector of fast, chaotic variables (possibly coupled). Can we identify a reduced model for $\mathbf{X}^{(\varepsilon)} = \mathbf{X}^{(\varepsilon)}(t, x)$ where

$$\partial_t \boldsymbol{X}^{(\varepsilon)} = \Delta \boldsymbol{X}^{(\varepsilon)} + \varepsilon^{-1} \boldsymbol{H}(\boldsymbol{X}^{(\varepsilon)}, \boldsymbol{Y}^{(\varepsilon)}) + \boldsymbol{F}(\boldsymbol{X}^{(\varepsilon)}, \boldsymbol{Y}^{(\varepsilon)})$$

This is a delicate question, since many natural approximations of noise yield **infinites** in the limiting SPDE.

This is a problem for Hairer's theory of regularity structures.

References

- **1** D. Kelly & I. Melbourne. *Smooth approximations of SDEs.* To appear in **Ann. Probab.** (2014).
- **2** D. Kelly & I. Melbourne. *Deterministic homogenization of fast slow systems with chaotic noise*. arXiv (2014).
- **3** D. Kelly. *Rough path recursions and diffusion approximations*. To appear in **Ann. App. Probab.** (2014).

All my slides are on my website (www.dtbkelly.com) Thank you!