Fast-slow systems with chaotic noise

David Kelly Ian Melbourne

Courant Institute New York University New York NY www.dtbkelly.com

May 12, 2015

Averaging and homogenization workshop, Luminy.

Fast-slow systems

We consider fast-slow systems of the form

$$\frac{dX}{dt} = \varepsilon h(X, Y) + \varepsilon^2 f(X, Y)$$
$$\frac{dY}{dt} = g(Y),$$

where $\varepsilon \ll 1$.

 $\frac{dY}{dt} = g(Y)$ be some **mildly chaotic** ODE with state space Λ and ergodic invariant measure μ . (eg. 3d Lorenz equations.)

$$h, f: \mathbb{R}^n \times \Lambda \to \mathbb{R}^n$$
 and $\int h(x, y) \, \mu(dy) = 0$.

Our aim is to find a **reduced equation** for X.

Fast-slow systems

If we rescale to large time scales $(\sim \varepsilon^{-2})$ we have

$$\frac{dX_{\varepsilon}}{dt} = \varepsilon^{-1}h(X_{\varepsilon}, Y_{\varepsilon}) + f(X_{\varepsilon}, Y_{\varepsilon})
\frac{dY_{\varepsilon}}{dt} = \varepsilon^{-2}g(Y_{\varepsilon}),$$

We turn X_{ε} into a random variable by taking $Y(0) \sim \mu$.

The aim is to characterise the **distribution** of the random path X_{ε} as $\varepsilon \to 0$.

Fast-slow systems as SDEs

Consider the simplified slow equation

$$\frac{dX_{\varepsilon}}{dt} = \varepsilon^{-1}h(X_{\varepsilon})v(Y_{\varepsilon}) + f(X_{\varepsilon})$$

where $h: \mathbb{R}^n \to \mathbb{R}^{n \times d}$ and $v: \Lambda \to \mathbb{R}^d$ with $\int v(y)\mu(dy) = 0$.

If we write $W_{\varepsilon}(t)=arepsilon^{-1}\int_0^t v(Y_{\varepsilon}(s))ds$ then

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_0^t h(X_{\varepsilon}(s)) dW_{\varepsilon}(s) + \int_0^t f(X_{\varepsilon}(s)) ds$$

where the integral is of Riemann-Stieltjes type $(dW_{\varepsilon} = \frac{dW_{\varepsilon}}{ds}ds)$.

Invariance principle for W_{ε}

We can write W_{ε} as

$$W_{\varepsilon}(t) = \varepsilon \int_{0}^{t/\varepsilon^{2}} v(Y(s)) ds = \varepsilon \sum_{j=0}^{\lfloor t/\varepsilon^{2} \rfloor - 1} \int_{j}^{j+1} v(Y(s)) ds$$

The assumptions on \underline{Y} lead to **decay of correlations** for the sequence $\int_{i}^{j+1} v(\underline{Y}(s)) ds$.

For very general classes of chaotic Y, it is known that $W_{\varepsilon} \Rightarrow W$ in the sup-norm topology, where W is a multiple of Brownian motion.

We will call this class of **Y** mildly chaotic.

What about the SDE?

Since

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_{0}^{t} h(X_{\varepsilon}(s)) dW_{\varepsilon}(s) + \int_{0}^{t} f(X_{\varepsilon}(s)) ds$$

This suggest a limiting SDE

$$\bar{X}(t) = \bar{X}(0) + \int_0^t h(\bar{X}(s)) \star dW(s) + \int_0^t f(\bar{X}(s))ds$$

But how should we interpret $\star dW$? Stratonovich? Itô? neither?

For additive noise h(x) = I

the answer is simple.

Continuity with respect to noise (Sussmann '78)

Consider

$$X(t) = X(0) + \int_0^t d \frac{U}{(s)} + \int_0^t f(X(s)) ds$$
,

where U is a uniformly continuous path.

The above equation is well defined and moreover $\Phi: U \to X$ is continuous in the sup-norm topology.

Also works in the multiplicative noise case (h(X)dU) but only when U is one dimensional.

The simple case (Melbourne, Stuart '11)

If the flow is mildly chaotic $(W_\varepsilon\Rightarrow W)$ then $X_\varepsilon\Rightarrow \bar{X}$ in the sup-norm topology, where

$$d\bar{X} = dW + f(\bar{X})ds.$$

In the multiplicative 1d noise case, the limit is Stratonovich

$$d\bar{X} = h(\bar{X}) \circ dW + f(\bar{X})ds$$
.

The strategy

The solution map takes "irregular path space" to "solution space"

$$\Phi: {W_\varepsilon} \mapsto {\it X_\varepsilon}$$

If this map were **continuous** then we could lift $W_{\varepsilon} \Rightarrow W$ to $X_{\varepsilon} \Rightarrow X$.

When the noise is both multidimensional and

multiplicative, this strategy fails.

Ito, Stratonovich and family

SDEs are very **sensitive** wrt approximations of BM.

Suppose

$$dX = h(X)dW + f(X)dt$$

and define an approximation

$$dX_n = h(X_n)dW_n + f(X_n)dt$$

with some approximation W_n of W.

Taking $n \to \infty$, X_n might converge to something completely different to X. It all depends on the approximation W_n .

Eg. 1 If W_n is a step function approximation of W, then X_n converges to the **Ito** SDE

$$dX = h(X)dW + f(X)dt$$

Eg. 2 (Wong-Zakai) If W_n is a linear interpolation of W, then X_n converges to the **Stratonovich** SDE

$$dX = h(X) \circ dW + f(X)dt$$

Eg. 3 (McShane, Sussman) If W_n is a higher order interpolation of W, we can get limits which are **neither Ito nor Stratonovich**.

It is not enough to know that $W_n \to BM$.

ννη / **Β**ινι.

We need more information.

Rough path theory (Lyons '97)

Provides a unified definition of a DE driven by a noisy path

$$X(t) = X(0) + \int_0^t h(X(s))dU(s) + \int_0^t h(X(s))ds$$

when the dU integral is not well defined.

In addition to U we must be given another path $U:[0,T]\to\mathbb{R}^{d\times d}$ which is (formally) an iterated integral

$$\mathbb{U}^{ij}(t) \stackrel{\text{def}}{=} \int_0^t U^i(s) dU^j(s) .$$

These extra components tells us how to interpret the **method of integration**.

Rough path theory (Lyons '97)

Given a "rough path" U = (U, U) we can construct a solution

$$X(t) = X(0) + \int_0^t h(X(s))d\mathbf{U}(s) + \int_0^t h(X(s))ds$$

Eg. 1 If U = W and $U = \int W dW$ is the Ito iterated integral, then the constructed X is the solution to the Ito SDE.

Eg. 2 If U = W and $\mathbb{U} = \int W \circ dW$ is the Stratonovich iterated integral, then the constructed X is the solution to the Stratonovich SDE.

Rough path theory (Lyons '97)

Most importantly (for us) the map

$$\Phi: (U, \mathbb{U}) \mapsto X$$

is an extension of the classical solution map and is **continuous** with respect to the "rough path topology".

Convergence of fast-slow systems

Returning to the slow variables

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_{0}^{t} h(X_{\varepsilon}(s)) dW_{\varepsilon}(s) + \int_{0}^{t} f(X_{\varepsilon}(s)) ds$$

If we let

$$\mathbf{W}_{\varepsilon}^{ij}(t) = \int_{0}^{t} \mathbf{W}_{\varepsilon}^{i}(r) d\mathbf{W}_{\varepsilon}^{j}(r)$$

then $X_{\varepsilon} = \Phi(W_{\varepsilon}, W_{\varepsilon})$.

Due to the continuity of Φ , if $(W_{\varepsilon}, W_{\varepsilon}) \Rightarrow (W, W)$, then $X_{\varepsilon} \Rightarrow \bar{X}$, where

$$ar{X}(t) = ar{X}(0) + \int_0^t h(ar{X}(s)) d\mathbf{W}(s) + \int_0^t h(ar{X}(s)) ds$$
 with $\mathbf{W} = (\mathbf{W}, \mathbf{W})$.

If the fast dynamics are mildly chaotic, then $(W_{\varepsilon}, \mathbb{W}_{\varepsilon}) \Rightarrow (W, \mathbb{W})$ where W is a Brownian motion and

where W is a Brownian motion and
$$W^{ij}(t) = \int_{-\infty}^{t} W^{i}(s) dW^{j}(s) dt$$

 $\mathbf{W}^{ij}(t) = \int_{0}^{t} \mathbf{W}^{i}(s) d\mathbf{W}^{j}(s) + \lambda^{ij} t$ where the integral is Itô type and

where the integral is Itô type and
$$\int_{0}^{ij} - \int_{0}^{\infty} \mathbf{F} \left\{ v^{i}(\mathbf{Y}(0)) v^{j}(\mathbf{Y}(s)) \right\} ds$$

where the integral is Itô type and
$$\lambda^{ij}$$
 " $=$ " $\int_0^\infty {\sf E}_\mu \{v^i({f Y}(0))\,v^j({f Y}(s))\}\,ds$.

 $\operatorname{Cov}^{ij}({\color{red} {\color{blue} {W}}})^{\,\prime\prime} = {\color{blue} {\color{b} {\color{blue} {\color{} {\color{b} {\color{b} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blu$

Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics $X_{arepsilon} \Rightarrow ar{X}$ where

$$d\bar{X} = h(\bar{X})dW + \left(f(\bar{X}) + \sum_{i,j,k} \lambda^{ij} \partial^k h^i(\bar{X}) h^{kj}(\bar{X})\right) dt$$
.

in Itô form, with λ^{ij} " = " $\int_0^\infty \mathbf{E}_{\mu} \{ v^i(\mathbf{Y}(0)) v^j(\mathbf{Y}(s)) \} ds$

$$d\bar{X} = h(\bar{X}) \circ dW + \left(f(\bar{X}) + \sum_{i,j,k} \lambda^{ij} \partial^k h^i(\bar{X}) h^{kj}(\bar{X})\right) dt$$

in Stratonovich form, with $\lambda^{ij} "= " \int_0^\infty \mathbf{E}_{\mu} \{ v^i(\mathbf{Y}(0)) \, v^j(\mathbf{Y}(s)) - v^j(\mathbf{Y}(0)) \, v^i(\mathbf{Y}(s)) \} \, ds \, .$

Proof I: Find a martingale

The strategy is to decompose

$$W_{\varepsilon}(t) = M_{\varepsilon}(t) + A_{\varepsilon}(t)$$

where M_{ε} is a good martingale sequence (Kurtz-Protter 92)

$$\left(\mathbf{U}_{\varepsilon}, \mathbf{M}_{\varepsilon}, \int \mathbf{U}_{\varepsilon} d\mathbf{M}_{\varepsilon} \right) \Rightarrow \left(\mathbf{U}, \mathbf{W}, \int \mathbf{U} d\mathbf{W} \right)$$

where the integrals are of Itô type.

And $A_{\varepsilon} \to 0$ uniformly, but oscillates rapidly. Hence A_{ε} is like a corrector.

Proof II: Martingale approximation (Gordin 69)

Introduce a Poincaré section Λ with Poincaré map T and return times τ_j . Write

$$\begin{split} & \boldsymbol{W}_{\varepsilon}(t) = \varepsilon \sum_{j=0}^{N(\varepsilon^{-2}t)-1} \int_{\tau_{j}}^{\tau_{j+1}} v(\boldsymbol{Y}(s)) ds \\ & = \varepsilon \sum_{j=0}^{N(\varepsilon^{-2}t)-1} \tilde{v}(T^{j}\boldsymbol{Y}(0)) = \varepsilon \sum_{j=0}^{N(\varepsilon^{-2}t)-1} \boldsymbol{V}_{j} \; . \end{split}$$

We have a CLT sum for a stationary random sequence $\{V_j\}$ with natural filtration $\mathcal{F}_j = T^{-j}\mathcal{M}$ (where \mathcal{M} is the σ -algebra for the $\mathbf{Y}(0)$ probability space)

Proof II: Martingale approximation (Gordin 69)

Use a martingale approximation to show that $\varepsilon \sum_{j}^{N_{\varepsilon}-1} V_{j} \Rightarrow W$.

Write
$$V_j = M_j + (Z_j - Z_{j+1})$$
 where $\mathbf{E}(M_j | \mathcal{F}_j) = 0$.

A good choice (if it converges) is the series

$$\mathbf{Z}_j = \sum_{k=0}^{\infty} \mathbf{E}(\mathbf{V}_{j+k}|\mathcal{F}_j) \ .$$

Convergence of this series is guaranteed by decay of correlations for the Poincaré map.

Proof II: Martingale approximation (Gordin 69)

The good martingale is $M_{\varepsilon}(t) = \varepsilon \sum_{j=0}^{N_{\varepsilon}-1} M_{j}$ and the corrector is $A_{\varepsilon}(t) = \varepsilon (Z_{0} - Z_{N_{\varepsilon}-1})$. We then get

$$W_{\varepsilon}(t) = \varepsilon \sum_{j=0}^{N(\varepsilon^{-2}t)-1} M_j + \varepsilon (Z_0 - Z_{N_{\varepsilon}-1}) \Rightarrow W(t) + 0$$

by Martingale CLT and boundedness of Z.

We are sweeping a lot under the rug here since $\mathcal{F}_j \supseteq \mathcal{F}_{j+1}$. Need to reverse the martingales.

Proof III: Computing the iterated integral

To compute W_{ε} we decompose it

$$\int {\color{red}W_\varepsilon} d{\color{red}W_\varepsilon} = \int {\color{red}M_\varepsilon} d{\color{red}M_\varepsilon} + \int {\color{red}M_\varepsilon} d{\color{red}A_\varepsilon} + \int {\color{red}A_\varepsilon} d{\color{red}M_\varepsilon} + \int {\color{red}A_\varepsilon} d{\color{red}A_\varepsilon}$$

Since M_{ε} is a good martingale sequence

$$\int M_{\varepsilon} dM_{\varepsilon} \Rightarrow \int W dW \quad \int A_{\varepsilon} dM_{\varepsilon} \Rightarrow 0 .$$

Even though $A_{\varepsilon}=O(\varepsilon)$, the iterated term $A_{\varepsilon}dA_{\varepsilon}$ does not vanish. The last two terms are computed as ergodic averages

$$\int M_{\varepsilon} dA_{\varepsilon} + \int A_{\varepsilon} dA_{\varepsilon} \to \lambda t \quad (a.s)$$

Extensions + Future directions

- The general fast-slow system (with h(x,y)) can be treated with infinite dimensional rough paths (or alternatively, rough flows Bailleul+Catellier)
- Rough path tools can be adapted to address discrete-time fast-slow maps.
- \bullet Fast-slow systems with feedback. Ergodic properties of Y^X are poorly understood.
- Stochastic PDE limits; regularity structures.

References

- **1** D. Kelly & I. Melbourne. *Smooth approximations of SDEs.* To appear in **Ann. Probab.** (2014).
- **2** D. Kelly & I. Melbourne. *Deterministic homogenization of fast slow systems with chaotic noise*. arXiv (2014).
- **3** D. Kelly. Rough path recursions and diffusion approximations. To appear in **Ann. App. Probab.** (2014).

All my slides are on my website (www.dtbkelly.com) Thank you!