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Fast-slow systems

Let Ẏ = g(Y ) be some weakly chaotic ODE with state space Λ
and ergodic invariant measure µ. We consider fast-slow systems of
the form

dX (ε)

dt
= ε−1h(X (ε),Y (ε)) + f (X (ε),Y (ε))

dY (ε)

dt
= ε−2g(Y (ε)) ,

where ε� 1 and h, f : Re × Λ→ Re and
∫

h(·, y) µ(dy) = 0. Also
assume that Y (0) ∼ µ.

The aim is to characterise the distribution of X (ε) as ε→ 0.



Fast-slow systems as SDEs

Consider the simplified slow equation

dX (ε)

dt
= ε−1h(X (ε))v(Y (ε)) + f (X (ε))

where h : Re → Re×d and v : Λ→ Rd with
∫

v(y)µ(dy) = 0.

If we write W (ε)(t) = ε−1
∫ t
0 v(Y (ε)(s))ds then

X (ε)(t) = X (ε)(0) +

∫ t

0
h(X (ε)(s))dW (ε)(s) +

∫ t

0
f (X (ε)(s))ds

where the integral is of Riemann-Lebesgue type.



Invariance principle for W (ε)

We can write W (ε) as

W (ε)(t) = ε

∫ t/ε2

0
v(Y (s))ds = ε

bt/ε2c−1∑
j=0

∫ j+1

j
v(Y (s))ds

The assumptions on Y lead to decay of correlations for the
sequence

∫ j+1
j v(Y (s))ds.

One can show that W (ε) ⇒W in the sup-norm topology, where
W is a multiple of Brownian motion.



What about the SDE?

Since

X (ε)(t) = X (ε)(0) +

∫ t

0
h(X (ε)(s))dW (ε)(s) +

∫ t

0
f (X (ε)(s))ds

This suggest a limiting SDE

X (t) = X (0) +

∫ t

0
h(X (s)) ? dW (s) +

∫ t

0
f (X (s))ds

But how should we interpret ?dW ?



Continuity with respect to noise (Sussmann ‘78)

Suppose that

X (t) = X (0) +

∫ t

0
h(X (s))dU(s) +

∫ t

0
f (X (s))ds ,

where U is a uniformly continuous path.

If d = 1 or h(x) = Id for all x , then Φ : U → X is continuous in
the sup-norm topology.



The simple case (Melbourne, Stuart ‘11)

If the flow is chaotic enough so that

W (ε) ⇒W ,

and either d = 1 or h = Id

then we have that X (ε) ⇒ X in the sup-norm topology, where

dX = h(X ) ◦ dW + f (X )ds ,

where the stochastic integral is of Stratonovich type.



Continuity of the solution map

The solution map takes “noisy path space” to “solution space”

Φ : W (ε) 7→ X (ε)

If this map were continuous then we could lift W (ε) ⇒W to
X (ε) ⇒ X .



Continuity of the solution map

We want to define a map Φ : U → X where U is a noisy path and

X (t) = X (0) +

∫ t

0
h(X (s))dU(s) +

∫ t

0
f (X (s))ds

This is problematic for two reasons.

1 - The solution map Φ is only defined for differentiable noise.
But W (ε) ⇒W and Brownian motion is not differentiable.

2 - Any attempt to define an extension of Φ to Brownian-like
objects will fail to be continuous. ie. We can find a sequence
W n ⇒W but Φ(W n) 6⇒ Φ(W ).

The lesson is, we must use extra information about the noise to
construct a continuous extension.



Rough path theory (Lyons ‘97)

Suppose we are given a path U : [0,T ]→ Rd×d which is (formally)
an iterated integral

Uij(t)
def
=

∫ t

0
U i (s)dU j(s) .

Given a “rough path” U = (U,U) we can construct a solution

X (t) = X (0) +

∫ t

0
h(X (s))dU(s) +

∫ t

0
h(X (s))ds

The map
Φ : (U,U) 7→ X

is an extension of the classical solution map and is continuous
with respect to the “rough path topology”.



Convergence of fast-slow systems

If we let

Wij ,(ε)(t) =

∫ t

0
W i ,(ε)(r)dW j ,(ε)(r)

then X (ε) = Φ(W (ε),W(ε)).

Due to the continuity of Φ, if (W (ε),W(ε))⇒ (W ,W), then
X (ε) ⇒ X , where

X (t) = X (0) +

∫ t

0
h(X (s))dW(s) +

∫ t

0
h(X (s))ds

with W = (W ,W).



We have the following result

Theorem (K. & Melbourne)

If the fast dynamics are “sufficiently chaotic”, then
(W (ε),W(ε))⇒ (W ,W) where W is a Brownian motion and

Wij(t) =

∫ t

0
W i (s)dW j(s) + λij t

where the integral is Ito type and

λij“ = ”

∫ ∞
0

Eµ(v i v j(Y (s)) ds .

Covij(W )“ = ”

∫ ∞
0

Eµ(v i v j(Y (s)) + v j v i (Y (s))) ds .



Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics
X (ε) ⇒ X where

dX = h(X )dW +

f (X ) +
∑
i ,j ,k

λij∂khi (X )hkj(X )

 dt .



General fast-slow systems I

The original fast-slow system was

dX (ε)

dt
= ε−1h(X (ε),Y (ε)) + f (X (ε),Y (ε))

dY (ε)

dt
= ε−2g(Y (ε)) .

How can we write this as an “approximate SDE”
when h is not a product?



General fast-slow systems II

Let H be the evaluation map (or Dirac distribution) H(x)ϕ = ϕ(x)
for ϕ : Rd → Rd suitably smooth.

Let us define the infinite dimensional paths

W (ε)(t) = ε−1
∫ t

0
h(·,Y (ε)(s))ds V (ε)(t) =

∫ t

0
f (·,Y (ε)(s))ds

then

H(X (ε))dW (ε) = H(X (ε))ε−1h(·,Y (ε))dt = ε−1h(X (ε),Y (ε))dt

and similarly for H(X (ε))dV (ε).It follows that we can write

X (ε)(t) = X (ε)(0)+

∫ t

0
H(X (ε)(s))dW (ε)(s)+

∫ t

0
H(X (ε)(s))dV (ε)(s)



General fast-slow systems III

Fortunately, rough path theory works the same for paths taking
values in a Banach space.

We apply the same strategy - find a weak limit for the triple
(W (ε),W(ε),V (ε)) where

W(ε) = ε−2
∫ t

0

∫ s

0
h(·,Y (ε)(u))⊗ h(·,Y (ε)(s))duds .

This can be achieved by a (fairly) standard tightness + f.d.d.
argument.



General fast-slow systems IV

By the continuity of the solution map, we obtain X (ε) ⇒ X where

X (t) = X (0) +

∫ t

0
H(X (s))dW(s) +

∫ t

0
H(X (s))dV (s)

where W = (W ,W) is an infinite dimensional “Brownian rough
path” and V (t) =

∫
f (·, y)dµ(y)t.

This is a bit of a mess, but we can obtain a simpler formula by
writing down the martingale problem.



General fast-slow systems V

Theorem (K. & Melbourne)

If the fast dynamics are “sufficiently chaotic” then X (ε) ⇒ X where

dX = σ(X )dB + ã(X )dt ,

where B is a standard BM on Rd and

ã(x) =

∫
f (x , y)dµ(y) +

d∑
k=1

B(hk(x , ·), ∂kh(x , ·))

σσT (x) = B(hi (x , ·), hj(x , ·)) + B(hj(x , ·), hi (x , ·))

and B is the “integrated autocorrelation” of the fast dynamics

B(v ,w)“ = ”

∫ ∞
0

Eµv(Y (0))v(Y (s))ds



The same idea even works for
discrete time fast-slow

systems.



Discrete time fast-slow systems

Suppose that T : Λ→ Λ is a chaotic map with invariant measure
µ. We consider the discrete fast-slow system

X
(n)
j+1 = X

(n)
j + n−1/2h(X

(n)
j ,T j) + n−1f (X

(n)
j ,T j)

Now define the path X (n)(t) = X
(n)
bntc.

The aim is to characterize the distribution of the path X (n) as
n→∞.



Discrete time fast-slow systems

Akin to the continuous time picture, the limiting SDE can be
determined by the limit of the pair (W (n),W(n)) where

W (n)(t) = n−1/2
bntc−1∑
j=0

v(T j)

and
W(n),αβ(t) = n−1

∑
0≤i<j<bntc

vα(T i )vβ(T j)
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All my slides are on my website (www.dtbkelly.com) Thank you!


