Fast-slow systems with chaotic noise

David Kelly Ian Melbourne

Courant Institute New York University New York NY www.dtbkelly.com

March 25, 2015

BU/Brown dynamics and PDE seminar, Brown.

Fast-slow systems

We consider fast-slow systems of the form

$$\frac{dX}{dt} = \varepsilon h(X, Y) + \varepsilon^2 f(X, Y)$$
$$\frac{dY}{dt} = g(Y),$$

where $\varepsilon \ll 1$.

 $\frac{dY}{dt} = g(Y)$ be some **mildly chaotic** ODE with state space Λ and ergodic invariant measure μ . (eg. 3d Lorenz equations.)

$$h, f: \mathbb{R}^n \times \Lambda \to \mathbb{R}^n$$
 and $\int h(x, y) \, \mu(dy) = 0$.

Our aim is to find a **reduced equation** $\frac{d\bar{X}}{dt} = F(\bar{X})$ with $\bar{X} \approx X$.

Fast-slow systems

If we rescale to large time scales we have

$$\frac{dX_{\varepsilon}}{dt} = \varepsilon^{-1}h(X_{\varepsilon}, \frac{Y_{\varepsilon}}{Y_{\varepsilon}}) + f(X_{\varepsilon}, \frac{Y_{\varepsilon}}{Y_{\varepsilon}})
\frac{dY_{\varepsilon}}{dt} = \varepsilon^{-2}g(Y_{\varepsilon}),$$

We turn X_{ε} into a random variable by taking $Y(0) \sim \mu$.

The aim is to characterise the **distribution** of the random path X_{ε} as $\varepsilon \to 0$.

Why is model reduction important?

- 1 The reduced model is **lower dimensional** and **less stiff** than the original fast-slow system.
- **2** Helps the user make **informed guess** when the model is unknown.

Fast-slow systems as SDEs

Consider the simplified slow equation

$$\frac{dX_{\varepsilon}}{dt} = \varepsilon^{-1}h(X_{\varepsilon})v(Y_{\varepsilon}) + f(X_{\varepsilon})$$

where $h: \mathbb{R}^n \to \mathbb{R}^{n \times d}$ and $v: \Lambda \to \mathbb{R}^d$ with $\int v(y) \mu(dy) = 0$.

If we write $W_{\varepsilon}(t)=arepsilon^{-1}\int_0^t v(Y_{\varepsilon}(s))ds$ then

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_0^t h(X_{\varepsilon}(s)) dW_{\varepsilon}(s) + \int_0^t f(X_{\varepsilon}(s)) ds$$

where the integral is of Riemann-Lebesgue type $(dW_{\varepsilon} = \frac{dW_{\varepsilon}}{ds}ds)$.

Invariance principle for W_{ε}

We can write W_{ε} as

$$W_{\varepsilon}(t) = \varepsilon \int_{0}^{t/\varepsilon^{2}} v(Y(s)) ds = \varepsilon \sum_{j=0}^{\lfloor t/\varepsilon^{2} \rfloor - 1} \int_{j}^{j+1} v(Y(s)) ds$$

The assumptions on \underline{Y} lead to **decay of correlations** for the sequence $\int_{i}^{j+1} v(\underline{Y}(s)) ds$.

For very general classes of chaotic Y, it is known that $W_{\varepsilon} \Rightarrow W$ in the sup-norm topology, where W is a multiple of Brownian motion.

We will call this class of **Y** mildly chaotic.

What about the SDE?

Since

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_{0}^{t} h(X_{\varepsilon}(s)) dW_{\varepsilon}(s) + \int_{0}^{t} f(X_{\varepsilon}(s)) ds$$

This suggest a limiting SDE

$$\bar{X}(t) = \bar{X}(0) + \int_0^t h(\bar{X}(s)) \star dW(s) + \int_0^t f(\bar{X}(s))ds$$

But how should we interpret $\star dW$? Stratonovich? Itô? neither?

For additive noise h(x) = I

the answer is simple.

Continuity with respect to noise (Sussmann '78)

Consider

$$X(t) = X(0) + \int_0^t d \frac{U}{(s)} + \int_0^t f(X(s)) ds$$

where U is a uniformly continuous path.

The above equation is well defined and moreover $\Phi: U \to X$ is continuous in the sup-norm topology.

The simple case (Melbourne, Stuart '11)

If the flow is mildly chaotic $(W_\varepsilon\Rightarrow W)$ then $X_\varepsilon\Rightarrow \bar{X}$ in the sup-norm topology, where

$$d\bar{X} = dW + f(\bar{X})ds.$$

Same idea works for general h provided n=d=1. The limit is Stratonovich

$$d\bar{X} = h(\bar{X}) \circ dW + f(\bar{X})ds$$
.

The strategy

The solution map takes "noisy path space" to "solution space"

$$\Phi: {W_\varepsilon} \mapsto {\textit{\textbf{X}}_\varepsilon}$$

If this map were **continuous** then we could lift $W_{\varepsilon} \Rightarrow W$ to $X_{\varepsilon} \Rightarrow X$.

When the noise is both multidimensional and

multiplicative, this strategy fails.

Ito, Stratonovich and family

SDEs are very **sensitive** wrt approximations of BM.

Suppose

$$dX = h(X)dW + f(X)dt$$

and define an approximation

$$dX_n = h(X_n)dW_n + f(X_n)dt$$

with some approximation W_n of W.

Taking $n \to \infty$, X_n might converge to something completely different to X. It all depends on the approximation W_n .

Eg. 1 If W_n is a step function approximation of W, then X_n converges to the **Ito** SDE

$$dX = h(X)dW + f(X)dt$$

Eg. 2 (Wong-Zakai) If W_n is a linear interpolation of W, then X_n converges to the **Stratonovich** SDE

$$dX = h(X) \circ dW + f(X)dt$$

Eg. 3 (Sussman) If W_n is a higher order spline interpolation of W, we can get limits which are **neither Ito nor Stratonovich**.

It is not enough to know that $W_n \to BM$.

ννη / **Β**ινι.

We need more information.

Rough path theory (Lyons '97)

Provides a unified definition of a DE driven by a noisy path

$$X(t) = X(0) + \int_0^t h(X(s))dU(s) + \int_0^t h(X(s))ds$$

when the dU integral is not well defined.

In addition to U we must be given another path $U:[0,T]\to\mathbb{R}^{d\times d}$ which is (formally) an iterated integral

$$\mathbb{U}^{ij}(t) \stackrel{\text{def}}{=} \int_0^t U^i(s) dU^j(s) .$$

These extra components tells us how to interpret the **method of integration**.

Rough path theory (Lyons '97)

Given a "rough path" U = (U, U) we can construct a solution

$$X(t) = X(0) + \int_0^t h(X(s))d\mathbf{U}(s) + \int_0^t h(X(s))ds$$

Eg. 1 If U = W and $U = \int W dW$ is the Ito iterated integral, then the constructed X is the solution to the Ito SDE.

Eg. 2 If U = W and $\mathbb{U} = \int W \circ dW$ is the Stratonovich iterated integral, then the constructed X is the solution to the Stratonovich SDE.

Rough path theory (Lyons '97)

Most importantly (for us) the map

$$\Phi: (U, \mathbb{U}) \mapsto X$$

is an extension of the classical solution map and is **continuous** with respect to the "rough path topology".

Convergence of fast-slow systems

Returning to the slow variables

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_{0}^{t} h(X_{\varepsilon}(s)) dW_{\varepsilon}(s) + \int_{0}^{t} f(X_{\varepsilon}(s)) ds$$

If we let

$$\mathbf{W}_{\varepsilon}^{ij}(t) = \int_{0}^{t} \mathbf{W}_{\varepsilon}^{i}(r) d\mathbf{W}_{\varepsilon}^{j}(r)$$

then $X_{\varepsilon} = \Phi(W_{\varepsilon}, W_{\varepsilon})$.

Due to the continuity of Φ , if $(W_{\varepsilon}, W_{\varepsilon}) \Rightarrow (W, W)$, then $X_{\varepsilon} \Rightarrow \bar{X}$, where

$$\bar{X}(t) = \bar{X}(0) + \int_0^t h(\bar{X}(s))d\mathbf{W}(s) + \int_0^t h(\bar{X}(s))ds$$

with $\mathbf{W} = (W, \mathbb{W})$.

Theorem (K. & Melbourne '14)

If the fast dynamics are mildly chaotic, then $(W_{\varepsilon}, \mathbb{W}_{\varepsilon}) \Rightarrow (W, \mathbb{W})$ where W is a Brownian motion and

$$\mathbf{W}^{ij}(t) = \int_0^t \mathbf{W}^i(s) d\mathbf{W}^j(s) + \lambda^{ij} t$$

where the integral is Itô type and

 $\lambda^{ij} = \mathbb{E}_{\mu}\{v^{i}(\underline{Y}(0)) v^{j}(\underline{Y}(s))\} ds.$

 $\operatorname{Cov}^{ij}({\color{red} {\color{blue} {W}}})^{\,\prime\prime} = {\color{blue} {\color{b} {\color{blue} {\color{} {\color{b} {\color{b} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blu$

Homogenized equations

Corollary

Under the same assumptions as above, the slow dynamics $X_{arepsilon} \Rightarrow ar{X}$ where

$$d\bar{X} = h(\bar{X})dW + \left(f(\bar{X}) + \sum_{i,j,k} \lambda^{ij} \partial^k h^i(\bar{X}) h^{kj}(\bar{X})\right) dt$$
.

in Itô form, with λ^{ij} " = " $\int_0^\infty \mathbf{E}_{\mu} \{ v^i(\mathbf{Y}(0)) v^j(\mathbf{Y}(s)) \} ds$

$$d\bar{X} = h(\bar{X}) \circ dW + \left(f(\bar{X}) + \sum_{i,j,k} \lambda^{ij} \partial^k h^i(\bar{X}) h^{kj}(\bar{X})\right) dt$$

in Stratonovich form, with $\lambda^{ij} "= " \int_0^\infty \mathbf{E}_{\mu} \{ v^i(\mathbf{Y}(0)) \, v^j(\mathbf{Y}(s)) - v^j(\mathbf{Y}(0)) \, v^i(\mathbf{Y}(s)) \} \, ds \, .$

General fast-slow systems I

What about the original (much more complicated) fast-slow system?

$$\frac{dX_{\varepsilon}}{dt} = \varepsilon^{-1}h(X_{\varepsilon}, \frac{Y_{\varepsilon}}{Y_{\varepsilon}}) + f(X_{\varepsilon}, \frac{Y_{\varepsilon}}{Y_{\varepsilon}})$$
$$\frac{dY_{\varepsilon}}{dt} = \varepsilon^{-2}g(Y_{\varepsilon}).$$

General fast-slow systems II

The slow variables

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_{0}^{t} \varepsilon^{-1} h(X_{\varepsilon}, \frac{Y_{\varepsilon}}{2}) ds + \int_{0}^{t} f(X_{\varepsilon}, \frac{Y_{\varepsilon}}{2}) ds$$

can be written in the product form

$$X_{\varepsilon}(t) = X_{\varepsilon}(0) + \int_0^t H(X_{\varepsilon}(s)) dW_{\varepsilon}(s) + \int_0^t H(X_{\varepsilon}(s)) dV_{\varepsilon}(s)$$

H is the **evaluation map** (or Dirac distribution) $H(x)\varphi = \varphi(x)$ for $\varphi: \mathbb{R}^d \to \mathbb{R}^d$ suitably smooth. And $W_{\varepsilon}, V_{\varepsilon}$ are the **function valued paths**

$$W_{\varepsilon}(t) = \varepsilon^{-1} \int_0^t h(\cdot, Y_{\varepsilon}(s)) ds$$
 $V_{\varepsilon}(t) = \int_0^t f(\cdot, Y_{\varepsilon}(s)) ds$

General fast-slow systems III

Theorem (K. & Melbourne '14)

If the fast dynamics are mildly chaotic then $X_{\varepsilon} \Rightarrow \bar{X}$ where

$$d\bar{X} = \sigma(\bar{X})dB + \tilde{a}(\bar{X})dt ,$$

where B is a standard BM on \mathbb{R}^d and

$$\tilde{a}(x) = \int f(x,y)d\mu(y) + \sum_{k=1}^{d} \mathfrak{B}(h^{k}(x,\cdot), \partial_{k}h(x,\cdot))$$
$$\sigma\sigma^{T}(x) = \mathfrak{B}(h^{i}(x,\cdot), h^{j}(x,\cdot)) + \mathfrak{B}(h^{j}(x,\cdot), h^{i}(x,\cdot))$$

and \mathfrak{B} is the "integrated autocorrelation" of the fast dynamics

$$\mathfrak{B}(v,w)"="\int_0^\infty \mathsf{E}_\mu v(\mathsf{Y}(0))w(\mathsf{Y}(s))ds$$

The real world has feedback

It is more realistic to look fast-slow systems of the form

$$\frac{dX_{\varepsilon}}{dt} = \varepsilon^{-1}h(X_{\varepsilon}, \mathbf{Y}_{\varepsilon}) + f(X_{\varepsilon}, \mathbf{Y}_{\varepsilon})
\frac{d\mathbf{Y}_{\varepsilon}}{dt} = \varepsilon^{-2}g(\mathbf{Y}_{\varepsilon}) + \varepsilon^{\beta-2}g_{0}(X_{\varepsilon}, \mathbf{Y}_{\varepsilon}) ,$$

for some $\beta \geq 1$. Since the coupling term is of lower order, this is called **weak feedback**.

Back of the envelope: For $\beta > 1$, the reduced model is exactly the same as the the zero feedback case.

For $\beta=1$, an additional correction term appears, which involves the weak feedback term g_0 .

The real world is infinite dimensional

Many fast-slow models are PDEs.

Suppose that $Y_{\varepsilon} = (Y_{\varepsilon}^1, Y_{\varepsilon}^2, \dots)$ is an infinite vector of fast, chaotic variables (possibly coupled). Can we identify a reduced model for $X_{\varepsilon} = X_{\varepsilon}(t, x)$ where

$$\partial_t X_{\varepsilon} = \Delta X_{\varepsilon} + \varepsilon^{-1} H(X_{\varepsilon}, Y_{\varepsilon}) + F(X_{\varepsilon}, Y_{\varepsilon})$$

This is a delicate question, since many natural approximations of noise yield **infinites** in the limiting SPDE.

This is a problem for Hairer's theory of **regularity structures**.

References

- **1** D. Kelly & I. Melbourne. *Smooth approximations of SDEs.* To appear in **Ann. Probab.** (2014).
- **2** D. Kelly & I. Melbourne. *Deterministic homogenization of fast slow systems with chaotic noise*. arXiv (2014).
- **3** D. Kelly. Rough path recursions and diffusion approximations. To appear in **Ann. App. Probab.** (2014).

All my slides are on my website (www.dtbkelly.com) Thank you!