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What is data assimilation?

Suppose u satisfies

du

— = F(u

il C)
with some unknown initial condition ug. We are most interested in
geophysical models, so think high dimensional, nonlinear, possibly
stochastic.

Suppose we make partial, noisy observations at times t = h,2h,...,nh, ...
Yn=Hup+&,

where H is a linear operator (think low rank projection), u, = u(nh), and
£~ N(0,T) iid.

The aim of data assimilation is to say something about the conditional
distribution of v, given the observations {y1,...,vn}
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lllustration (Initialization)

Figure: The blue circle
represents our guess of
ug. Due to the
uncertainty in ug, this is
a probability measure.
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lllustration (Forecast step)
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Data assimilation

Figure: Apply the time h

flow map V. This
produces a new
probability measure
which is our forecasted
estimate of uy. This is

called the forecast step.
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lllustration (Make an observation)

Figure: We make an
observation

y1 = Huy +&;. In the
picture, we only observe
the x variable.
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lllustration (Analysis step)

y Figure: Using Bayes
formula we compute the
conditional distribution
of uy|y1. This new
measure (called the
posterior) is the new
estimate of u;. The
uncertainty of the
estimate is reduced by

@ — X incorporating the

obs observation. The
forecast distribution
steers the update from
the observation.
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Bayes' formula filtering update

Let Y ={v0,Y1,---,¥n}. We want to compute the conditional density
P(uny1|Yny1), using P(us|Yn) and ypy1.

By Bayes' formula, we have
P(unt1]Yni1) = P(tung1| Y, Yng1) < P(Yag1|tng1)P(Ung1] Yn)
But we need to compute the integral
P(ups1|Yn) = /P(un+1]Yn, un)P(un|Yn)duy .
In geophysical models, we can have u € RN where N = O(108). The

rigorous Bayesian approach is computationally infeasible.
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The Kalman Filter

For a linear model u,11 = Mu, + 1,11, the Bayesian integral is Gaussian
and can be computed explicitly. The conditional density is characterized
by its mean and covariance

Mpy1 = (1 = Kny1H)mp 4+ Kny1tHy nga

~

Cn+1 = (I - Kn—l—lH)Cn—I—l 5

where

o (Mpt1, E",,H) is the forecast mean and covariance.
o Knp1 = CnitHT(T + HCohi1HT) L is the Kalman gain.

The procedure of updating (m,, C,) — (mMp+1, Cpy1) is known as the
Kalman filter.
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Ensemble Kalman filter (Evensen 94)

y

Figure: Start with K
ensemble members
drawn from some
distribution. Empirical
- N representation of wug.
;e e The ensemble members
' ’ are denoted uék).

Only KN numbers are stored. Better than Kalman if K < N.
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Ensemble Kalman filter (Forecast step)

y
v
/\ Figure: Apply the
Y dynamics V¥ to each
@ ensemble member.
// //
4 /
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Ensemble Kalman filter (Make obs)

David Kelly (CIMS)

L2 Figure: Make an
o @ observation.
// //
// 4
e - @ — X
0 obs
@0 .7
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Ensemble Kalman filter (Analysis step)

Figure: Approximate the
forecast distribution
with a Gaussian. Fit the

o) . .

Pl //b Gaussian using the
p °s empirical statistics of
—= @ — X the ensemble.

obs
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How to implement the Gaussian approximation
The naive method is to simply write:

1 1 ~-1/2
P(y1]un)P(un) o exp(—5 | Y/2(y1 — Huy)) exp(—5]C

with the empirical statistics

1= 5 V)

C 1 ZK: ( ,’7‘71> (W(k)(ugk)) _ r’;u)T '

k:

(u1 —

n)l?)

In the linear model case W(u,) = Mu, + 1,, this produces an unbiased
estimate of the posterior mean, but a biased estimate of the covariance.
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How to implement the Gaussian approximation

A better approach is to sample using Randomized Maximum Likelihood
(RML) method: Draw the sample ugk) by minimizing the functional

1 P 1 ~—1/2 k
SIFH2047 = Hu) + 5180 (= W )P

where ygk) =y + Egk) is a perturbed observation.

In the linear case W(u,) = Muy, + 1, this produces iid Gaussian samples
with mean and covariance satisfying the Kalman update equations, with C
in place of the true forecast covariance.

We end up with

A = (1 = KW () + Ky Hy W
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Ensemble Kalman filter (Perturb obs)

y
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Data assimilation

Figure: Turn the
observation into K
artificial observations by
perturbing by the same
source of observational
noise.
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Ensemble Kalman filter (Analysis step)
y

Figure: Update each

member using the

5P Kalman update.formu!a.
/,’ K The Kalman gain Ky is

O/O & computed using the

o e®®@®® x ensemble covariance.

U = (1 Ky H)W(u (k)) + KiHyY) Ky = CiHT(T + HCiHT) ™

Ci= *Z(w(uo ) = )W) = Fiper) T
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Stability / ergodicity of filters

We ask whether the filter inherits important physical properties from the

underlying model. For instance, if the model is known to be ergodic, can
the same be said of the filter?

The truth-filter process (up, ug,l), A us,K)) is a homogeneous Markov

chain. We will seek ergodicity results for the pair rather than the filter
alone.
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The theoretical framework

A Markov chain {X,},en on a state space X is called geometrically

ergodic if it has a unique invariant measure 7 and for any initialization X
we have

EXOf(X,,)—/f(x)W(dx)

for some r € (0,1) and any m-ble bdd f.

< C(Xo)r"

The Meyn-Tweedie approach is to verify two assumptions that guarantee
geometric ergodicity:

1- Lyapunov function / Energy dissipation: E,|Xn11]? < a|X,|? + 8
with a € (0,1), 8 > 0.

2- Minorization: Find compact C C X, measure v supported on C,
k > 0 such that P(x,A) > kv(A) forall x e C, AC X.
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Inheriting an energy principle

Suppose we know the model satisfies an energy principle
E,|W(u)* < alul’ + 8

for « € (0,1), 8 > 0. Does the filter inherit the energy
principle?

Eq | )7 < o/ [u)? + 8
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Observable energy (Tong, Majda, K. 15)

We have ) ) )
“E7+)1 =(I- Kn+1H)W(U$1 )) + K,,+1Hyf,+)1

Start by looking at the observed part:
HU®)| = (H = HK i )W (0) + HK 1 Hy ),
But notice that
(H—HKps1H) = (H—= HCniaHT (I + HC 1 HT) 1H)
= (I +HCph1HT)H

Hence
(H = HK e H)W(u$)] < [HY (04

David Kelly (CIMS) Data assimilation March 16, 2016

13 / 24



Observable energy (Tong, Majda, K. 15)

We have the energy estimate
Eo|Huyy[* < (14 8| HW(uh?)P + &

for arb small §. Unfortunately, the same trick doesn’t work for the
unobserved variables ... However, if we assume an observable energy
criterion instead:

IHYU (SN < alHUPP + 8 (%)

Then we obtain a Lyapunov function for the observed components of the
filter:
\Hugk)lz < o/]Huf,k)|2 +3.

eg. (%) is true for linear dynamics if there is no interaction between
observed and unobserved variables at infinity.
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Can we get around the problem by
tweaking the algorithm?
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Covariance inflation (Tong, Majda, K. 15)
We modify algorithm by introducing a covariance inflation :

o~

Crt1 > Cort + Anpa!

where
)\n—f—l X @n+11(@n+1 > /\)

k
Oni1 = KZ| i — HY ()2

and A is some constant threshold. If the predictions are near the
observations, then there is no inflation.

Thm. The modified EnKF inherits an energy principle from the model.
W) < alx? + 8 = Eqully? < o/|uf)2 + 5

Consequently, the modified EnKF is stable (ergodic).
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Stability should not be taken for
granted!
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Catastrophic filter divergence
Lorenz-96: ij = (ujy1 — uj—2)uj—1 — uj+ F with j =1,...,40. Periodic
BCs. Observe every fifth node. (Harlim-Majda 10, Gottwald-Majda 12)

EAKF prior x.,,, . cycle=2030

EAKF posterior X, cycle=2830
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True solution in a bounded set, but filter blows up to machine infinity in

finite timel!
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For complicated models, only
heuristic arguments offered as
explanation.

Can we prove it for a simpler constructive model?
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The rotate-and-lock map (K., Majda, Tong. PNAS 15.)

The model ¥ : R? — R? is a composition of two maps
W(Xay) = wlock(wrot(x7}/)) where

Vo) = (int ans ) ()

and W, rounds the input to the nearest point in the grid
G={(m@2n+1)) cR?>: mncZ}.

It is easy to show that this model has an energy dissipation principle:

W(x,y)? < al(x,y)? + 8

for « € (0,1) and 5 > 0.
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Figure: The red square
is the trajectory u, = 0.
u i The blue dots are the
positions of the forecast
ensemble W(ug),
W(ugy ). Given the
locking mechanism in
V, this is a natural
configuration.

4.4444
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| : Figure: We make an
observation (H shown
below) and perform the
analysis step. The green

+ —
dots are u7, uy .

1 0 _
H = <€2 1) y1= ({15,861 +¢ 2‘51,X)
uf & (8,4 — 28/(1 + 2¢?))
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David Kelly (CIMS)

Data assimilation

Figure: Beginning the
next assimilation step.
Apply W, to the
ensemble (blue dots)
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Data assimilation

Figure: Apply W ock.
The blue dots are the
forecast ensemble
W(uf), W(uy). Exact
same as frame 1, but
higher energy orbit. The
cycle repeats leading to
exponential growth.
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Theorem (K.-Majda-Tong 15 PNAS)

For any N > 0 and any p € (0,1) there exists a choice of
parameters such that

p (|u‘nk)y > M, foralln < N) >1-p
where M,, is an exponentially growing sequence.

ie - The filter can be made to grow exponentially for an arbitrarily long
time with an arbitrarily high probability.
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Next: Conditional ergodicity

The above notion of ergodicity tells us that the filter is behaving in a
statistical sense like a real physical model.

Another useful notion of ergodicity concerns the long-time behaviour of
the measure P(u,|Y,) for a fixed sequence of observations Y.

If we initialize two filters differently, forecast with independent models, but
feed in the same observations, do the filters converge to each other?

Use ideas from ergodicity for Markov chains in random environments
(Ongoing project w/ J. Mattingly, A. Stuart. )
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All my slides are on my website (www.dtbkelly.com) Thank you!
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