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Part I: What is data assimilation?
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What is data assimilation?

Suppose u satisfies an evolution equation

du

dt
= F (u)

with some unknown initial condition u0 ∼ µ0.

There is a true trajectory of u that is producing partial, noisy observations
at times t = h, 2h, . . . , nh:

yn = Hun + ξn

where H is a linear operator (think low rank projection), un = u(nh), and
ξn ∼ N(0, Γ) iid.

The aim of data assimilation is to characterize the conditional
distribution of un given the observations {y1, . . . , yn}
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The conditional distribution is updated
via the filtering cycle.
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Illustration (Initialization)
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Figure: The blue circle
represents our initial
uncertainty u0 ∼ µ0.
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Illustration (Forecast step)
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Figure: Apply the time h
flow map Ψ. This
produces a new
probability measure
which is our forecasted
estimate of u1. This is
called the forecast step.
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Illustration (Make an observation)
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Figure: We make an
observation
y1 = Hu1 + ξ1. In the
picture, we only observe
the x variable.
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Illustration (Analysis step)
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Figure: Using Bayes
formula we compute the
conditional distribution
of u1|y1. This new
measure (called the
posterior) is the new
estimate of u1. The
uncertainty of the
estimate is reduced by
incorporating the
observation. The
forecast distribution
steers the update from
the observation.
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Bayes’ formula filtering update

Let Y n = {y1, . . . , yn}. We want to compute the conditional density
P(un+1|Y n+1), using P(un|Y n) and yn+1.

By Bayes’ formula, we have

P(un+1|Y n+1) = P(un+1|Y n, yn+1) ∝ P(yn+1|un+1)P(un+1|Y n)

But we need to compute the integral

P(un+1|Y n) =

∫
P(un+1|Y n, un)P(un|Y n)dun .
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The ‘optimal filtering’ framework is impractical for high
dimensional models, as the integrals are impossible to

compute and densities impossible to store.
In numerical weather prediction, we have O(109)

variables for ocean-atmosphere models (discretized PDEs).
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The Ensemble Kalman filter (EnKF) is a low
dimensional, empirical approximation of the posterior

measure P(un|Y n).

EnKF builds on the idea of a Kalman filter.
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The Kalman Filter

For a linear model un+1 = Mun + ηn+1, the Bayesian integral is Gaussian
and can be computed explicitly. The conditional density is proportional to

exp

(
−1

2
|Γ−1/2(yn+1 − Hu)|2 − 1

2
|Ĉ
−1/2

1 (u − m̂n+1)|2
)

where (m̂n+1, Ĉn+1) is the forecast mean and covariance. We obtain

mn+1 = (1− Kn+1H)m̂n + Kn+1yn+1

Cn+1 = (I − Kn+1H)Ĉn+1 ,

where Kn+1 = Ĉn+1H
T (Γ + HĈn+1H

T )−1 is the Kalman gain. The
procedure of updating (mn,Cn) 7→ (mn+1,Cn+1) is known as the Kalman
filter.
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EnKF is an ‘approximate linearized
sampling’ procedure.
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Ensemble Kalman filter (Evensen 94)
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Figure: Start with K
ensemble members
drawn from some
distribution. Empirical
representation of u0.
The ensemble members
are denoted u

(k)
0 .

Only KN numbers are stored. For the covariance, better than Kalman if
K < N.
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Ensemble Kalman filter (Forecast step)
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Figure: Apply the
dynamics Ψ to each
ensemble member.
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Ensemble Kalman filter (Make obs)
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Figure: Make an
observation.
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Ensemble Kalman filter (Analysis step)
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Figure: Approximate the
forecast distribution
with a Gaussian. Fit the
Gaussian using the
empirical statistics of
the ensemble.
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How to implement the Gaussian approximation

The posterior is approximately sampled using the Randomized Maximum

Likelihood (RML) method: Draw the sample u
(k)
n+1 by minimizing the

functional

1

2
|Γ−1/2(y

(k)
n+1 − Hu)|2 +

1

2
|Ĉ
−1/2

n+1 (u −Ψ(k)(u
(k)
n ))|2

where y
(k)
n+1 = yn+1 + ξ

(k)
n+1 is a perturbed observation and Ĉn+1 is the

empirical covariance of {Ψ(k)(u
(k)
n )}Kk=1

In the linear case Ψ(un) = Mun + ηn, this produces iid Gaussian samples
with mean and covariance satisfying the Kalman update equations, with
Ĉn+1 in place of the true forecast covariance.

We end up with u
(k)
n+1 = (1− Kn+1H)Ψ(k)(u

(k)
n ) + Kn+1Hy

(k)
n+1.
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Ensemble Kalman filter (Perturb obs)
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Figure: Turn the
observation into K
artificial observations by
perturbing by the same
source of observational
noise.

y
(k)
1 = y1 + ξ

(k)
1
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Ensemble Kalman filter (Analysis step)

x

y

Ψ

obs

Figure: Update each
member using the
Kalman update formula.
The Kalman gain K 1 is
computed using the
ensemble covariance.

u
(k)
1 = (1− K 1H)Ψ(u

(k)
0 ) + K 1Hy

(k)
1 K 1 = Ĉ 1H

T (Γ + HĈ 1H
T )−1

Ĉ 1 =
1

K − 1

K∑
k=1

(Ψ(u
(k)
0 )− m̂1)(Ψ(u

(k)
0 )− m̂1)T
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Part II : Ergodicity for EnKF
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What are we interested in understanding?

1− Stability with respect to initializations (signal-filter
ergodicity):

Statistics of (un, u
(1)
n , . . . , u

(K )
n ) converge to

invariant statistics as n→∞.

2− Accuracy of the approximation (conditional ergodicity):

Laws of (u
(1)
n , . . . , u

(K )
n )|Y n with different

intializations (u
(1)
0 , . . . , u

(K )
0 ) converge to

eachother (and hopefully the posterior) as
n→∞.

Rmk. All results are in the K fixed regime.
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Animation

We have the two-dimensional model

du = −∇V (u)dt + σdW

where V (x , y) = (1− x2 − y 2)2 and we only observe the
x variable.
EnKF is signal-filter ergodic, as the marginals converge
to uniform measure on circle. But also conditionally
ergodic, the law is close to the posterior, regardless of
initialization. Not close to posterior, ensemble clusters on
one of the two modes.
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Today we focus on geometric ergodicity
for the signal-filter process

(un, u
(1)
n , . . . , u

(K )
n ).
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The theoretical framework

A Markov chain {X n}n∈N on a state space X is called geometrically
ergodic if it has a unique invariant measure π and for any initialization x0

we have

sup
|f |≤1

∣∣∣∣Ex0f (X n)−
∫

f (x)π(dx)

∣∣∣∣ ≤ C (x0)rn

for some r ∈ (0, 1) and any m-ble bdd f .

We use the coupling approach: Let X ′n and X ′′n be two copies of X n, such
that X ′0 = x0 and X ′′0 ∼ π, and are coupled in such a way that X ′n = X ′′n
for n ≥ T , where T is the first hitting time X ′T = X ′′T . Then we have

‖Pnδx0 − π‖TV ≤ 2P(T > n)
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The Doeblin / Meyn-Tweedie approach is to verify two assumptions
that guarantee the coupling can be constructed with P(T > n) . rn:

1- Lyapunov function / Energy dissipation: En|X n+1|2 ≤ α|X n|2 + β
with α ∈ (0, 1), β > 0.

2- Minorization: Find compact C ⊂ X , measure ν supported on C ,
κ > 0 such that P(x ,A) ≥ κν(A) for all x ∈ C , A ⊂ X .

To construct the coupling (within C ) we let X̃ n+1 = f̃ (X̃ n, ω) describe the
Markov chain with kernel P̃(x ,A) = 1

1−κ(P(x ,A)− κν(A)) and let

X ′n+1 = φf̃ (X ′n, ω) + (1− φ)ξ

where φ ∼ Bernoulli(κ) and ξ ∼ ν. Easy to see that
Px(X ′1 ∈ A) = P(x ,A), so this is a copy of the original Markov chain.
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Theorem (K., Majda, Tong 15 Nonlinearity)

Let X n = (un, u
(1)
n , . . . , u

(K)
n ) and suppose un satisfies observable

energy dissipation:

En|Hun+1|2 ≤ α|Hun|2 + β ,

for α ∈ (0, 1), β > 0. Then there exists a unique stationary
measure π for the Markov chain X n and moreover, there exists
r ∈ (0, 1) such that

sup
|f |≤1

∣∣∣∣Ex0f (X n)−
∫

f (x)π(dx)

∣∣∣∣ ≤ C (x0)rn

for any initialization x0 = (u0, u
(1)
0 , . . . , u

(K)
0 ) and any observable f .
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The Observable energy dissipation assumption

En|Hun+1|2 ≤ α|Hun|2 + β .

requires that the dissipation in the observed variables is controlled by the
observed variables.

Guarantees ‘inheritance of stability’, the signal-ensemble process X n has a
Lyapunov function En|X n+1|2 ≤ α′|X n|2 + β′.
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This assumptions is strong - stability is
not always inherited by the filter.
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Catastrophic filter divergence
Lorenz-96: u̇j = (uj+1 − uj−2)uj−1 − uj + F with j = 1, . . . , 40. Periodic
BCs. Observe every fifth node. (Harlim-Majda 10, Gottwald-Majda 12)

True solution in a bounded set, but filter blows up to machine infinity in
finite time!
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The rotate-and-lock map (K., Majda, Tong. PNAS 15.)

The model Ψ : R2 → R2 is a composition of two maps
Ψ(x , y) = Ψlock(Ψrot(x , y)) where

Ψrot(x , y) =

(
ρ cos θ −ρ sin θ
ρ sin θ ρ cos θ

)(
x
y

)
and Ψlock rounds the input to the nearest point in the grid

G = {(m, (2n + 1)ε) ∈ R2 : m, n ∈ Z} .

It is easy to show that this model has an energy dissipation principle:

|Ψ(x , y)|2 ≤ α|(x , y)|2 + β

for α ∈ (0, 1) and β > 0.
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(a)

Figure: The red square
is the trajectory un = 0.
The blue dots are the
positions of the forecast
ensemble Ψ(u+

0 ),
Ψ(u−0 ). Given the
locking mechanism in
Ψ, this is a natural
configuration.
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(b)

Figure: We make an
observation (H shown
below) and perform the
analysis step. The green
dots are u+

1 , u−1 .

Observation matrix

H =

[
1 0
ε−2 1

]
Truth un = (0, 0).

The filter is certain that the x-coordinate is x̂ (the dashed line). The filter
thinks the observation must be (x̂ , ε−2x̂ + u1,y ), but it is actually (0, 0).

The filter concludes that u1,y ≈ −ε−2x̂ .
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(c)

Figure: Beginning the
next assimilation step.
Apply Ψrot to the
ensemble (blue dots)
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(d)

Figure: Apply Ψlock .
The blue dots are the
forecast ensemble
Ψ(u+

1 ), Ψ(u−1 ). Exact
same as frame 1, but
higher energy orbit. The
cycle repeats leading to
exponential growth.
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Theorem (K., Majda, Tong 15 PNAS)

For any N > 0 and any p ∈ (0, 1) there exists a choice of
parameters such that

P
(
|u(k)

n | ≥ Mn for all n ≤ N
)
≥ 1− p

where Mn is an exponentially growing sequence.

ie - The filter can be made to grow exponentially for an arbitrarily long
time with an arbitrarily high probability.
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Ensemble alignment can cause EnKF to
gain energy, eventually leading to finite

time blow-up

This is known as catastrophic filter
divergence.

Can we get around the problem by
tweaking the algorithm?

David Kelly (CIMS) Data assimilation November 11, 2016 27 / 31



Adaptive Covariance Inflation (Tong, Majda, K. 15)
We modify algorithm by introducing a covariance inflation :

Ĉn+1 7→ Ĉn+1 + λn+1I

where
λn+1 ∝ Θn+11(Θn+1 > Λ)

Θn+1 =

√√√√ 1

K

K∑
k=1

|y (k)
n+1 − HΨ(u

(k)
n )|2

and Λ is some constant threshold. If the predictions are near the
observations, then there is no inflation.

Thm. The modified EnKF inherits an energy principle from the model.

Ex |Ψ(x)|2 ≤ α|x |2 + β ⇒ En|u(k)
n+1|

2 ≤ α′|u(k)
n |2 + β′

Consequently, the modified EnKF is signal-filter ergodic.
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Adaptive inflation allows us to use cheap
integration schemes in the forecast

dynamics. These would usually lead to
numerical blow-up.
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Figure: RMS error for EnKF on 5d Lorenz-96 with sparse obs (1 node), strong turbulence regime. Euler method with course
step size. Lower panel has additional constant inflation which helps accuracy.

Applicable to more sophisticated geophysical models, such as 2-layer QG with
course graining (Lee, Majda 16’).
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All my slides are on my website (www.dtbkelly.com) Thank you!
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