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Data assimilation and EnKF

Suppose we have a stochastic dynamical system un+1 = Ψ(un) with an
random initial condition u0 ∼ N(m0,C 0).

We make noisy, partial observations of the state yn+1 = Hun+1 + ξn+1

(H low rank matrix and ξn iid Gaussians) and write Y n = {y1, . . . , yn}.

The Ensemble Kalman Filter is an empirical (but inconsistent)
approximation of the posterior

P(un|Y n) ≈ 1

K

K∑
k=1

δ(un − u
(k)
n )
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EnKF derivation

To derive the EnKF update equations {u(k)
n }Kk=1 7→ {u

(k)
n+1}Kk=1, first write

down Bayes formula:

P (un+1|Y n+1) ∝ P (yn+1|un+1) P (un+1|Y n)

= exp

(
−1

2
|yn+1 − Hun+1|2Γ

)
P (un+1|Y n)

Use {Ψ(k)(u
(k)
n )}Kk=1 to approximate P(un+1|Y n) with a Gaussian

exp

(
−1

2
|yn+1 − Hun+1|2Γ

)
exp

(
−1

2
|un+1 − m̂n+1|2Ĉn+1

)
Draw samples {u(k)

n+1}Kk=1 from resulting Gaussian.
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The update equations for EnKF

The EnKF ‘particles’ {u(k)
n }Kk=1 are updated according to

u
(k)
n+1 = (1− Kn+1H)Ψ(k)(u

(k)
n ) + Kn+1Hy

(k)
n+1

where Ψ(k) are independent realizations of the dynamics,

y
(k)
n+1 = yn+1 + ξ

(k)
n+1 are perturbed observations and Kn+1 is the

empirical Kalman gain matrix

Kn+1 = Ĉn+1H
T (HĈn+1H

T + Γ)−1 and

Ĉn+1 =
1

K − 1

K∑
k=1

(
Ψ(k)(u

(k)
n )−Ψ(·)(u

(·)
n )

)(
Ψ(k)(u

(k)
n )−Ψ(·)(u

(·)
n )

)T
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Ergodicity for EnKF
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Two notions of ergodicity

1− Signal-filter ergodicity:

Statistics of (un, u
(1)
n , . . . , u

(K )
n ) converge to

invariant statistics as n→∞.

2− Conditional ergodicity:

Laws of (u
(1)
n , . . . , u

(K )
n )|Y n with different

intializations (u
(1)
0 , . . . , u

(K )
0 ) converge to

eachother (and hopefully the posterior) as
n→∞.

Rmk. All results are in the K fixed regime.
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Animation

We have the two-dimensional model

du = −∇V (u)dt + σdW

where V (x , y) = (1− x2 − y 2)2 and we only observe the
x variable.
EnKF is signal-filter ergodic, as the marginals converge
to uniform measure on circle. But also conditionally
ergodic, the law is close to the posterior, regardless of
initialization.
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Today we focus on geometric ergodicity
for the signal-filter process

(un, u
(1)
n , . . . , u

(K )
n ).
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The theoretical framework

A Markov chain {X n}n∈N on a state space X is called geometrically
ergodic if it has a unique invariant measure π and for any initialization x0

we have

sup
|f |≤1

∣∣∣∣Ex0f (X n)−
∫

f (x)π(dx)

∣∣∣∣ ≤ C (x0)rn

for some r ∈ (0, 1) and any m-ble bdd f .

We use the coupling approach: Let X ′n and X ′′n be two copies of X n, such
that X ′0 = x0 and X ′′0 ∼ π, and are coupled in such a way that X ′n = X ′′n
for n ≥ T , where T is the first hitting time X ′T = X ′′T . Then we have

‖Pnδx0 − π‖TV ≤ 2P(T > n)
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The Doeblin / Meyn-Tweedie approach is to verify two assumptions
that guarantee the coupling can be constructed with P(T > n) . rn:

1- Lyapunov function / Energy dissipation: En|X n+1|2 ≤ α|X n|2 + β
with α ∈ (0, 1), β > 0.

2- Minorization: Find compact C ⊂ X , measure ν supported on C ,
κ > 0 such that P(x ,A) ≥ κν(A) for all x ∈ C , A ⊂ X .

To construct the coupling (within C ) we let X̃ n+1 = f̃ (X̃ n, ω) describe the
Markov chain with kernel P̃(x ,A) = 1

1−κ(P(x ,A)− κν(A)) and let

X ′n+1 = φf̃ (X ′n, ω) + (1− φ)ξ

where φ ∼ Bernoulli(κ) and ξ ∼ ν. Easy to see that
Px(X ′1 ∈ A) = P(x ,A), so this is a copy of the original Markov chain.
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Lyapunov function: Inheriting an energy principle

Suppose we know the model satisfies an energy principle

En|Ψ(u)|2 ≤ α|u|2 + β

for α ∈ (0, 1), β > 0. Does the filter inherit the energy
principle?

En|u(k)
n+1|

2 ≤ α′|u(k)
n |2 + β′

The is strong evidence to suggest that this does not hold
in general
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Catastrophic filter divergence
Lorenz-96: u̇j = (uj+1 − uj−2)uj−1 − uj + F with j = 1, . . . , 40. Periodic
BCs. Observe every fifth node. (Harlim-Majda 10, Gottwald-Majda 12)

True solution in a bounded set, but filter blows up to machine infinity in
finite time!
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The rotate-and-lock map (K., Majda, Tong. PNAS 15.)

The model Ψ : R2 → R2 is a composition of two maps
Ψ(x , y) = Ψlock(Ψrot(x , y)) where

Ψrot(x , y) =

(
ρ cos θ −ρ sin θ
ρ sin θ ρ cos θ

)(
x
y

)
and Ψlock rounds the input to the nearest point in the grid

G = {(m, (2n + 1)ε) ∈ R2 : m, n ∈ Z} .

It is easy to show that this model has an energy dissipation principle:

|Ψ(x , y)|2 ≤ α|(x , y)|2 + β

for α ∈ (0, 1) and β > 0.
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(a)

Figure: The red square
is the trajectory un = 0.
The blue dots are the
positions of the forecast
ensemble Ψ(u+

0 ),
Ψ(u−0 ). Given the
locking mechanism in
Ψ, this is a natural
configuration.
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(b)

Figure: We make an
observation (H shown
below) and perform the
analysis step. The green
dots are u+

1 , u−1 .

Observation matrix

H =

[
1 0
ε−2 1

]
Truth un = (0, 0).

The filter is certain that the x-coordinate is x̂ (the dashed line). The filter
thinks the observation must be (x̂ , ε−2x̂ + u1,y ), but it is actually (0, 0).

The filter concludes that u1,y ≈ −ε−2x̂ .
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(c)

Figure: Beginning the
next assimilation step.
Apply Ψrot to the
ensemble (blue dots)
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(d)

Figure: Apply Ψlock .
The blue dots are the
forecast ensemble
Ψ(u+

1 ), Ψ(u−1 ). Exact
same as frame 1, but
higher energy orbit. The
cycle repeats leading to
exponential growth.
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For any N > 0 and any p ∈ (0, 1) there exists a choice of parameters
such that

P
(
|u(k)

n | ≥ Mn for all n ≤ N
)
≥ 1− p

where Mn is an exponentially growing sequence.

ie - The filter can be made to grow exponentially for an arbitrarily long
time with an arbitrarily high probability.
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Ensemble alignment can cause EnKF to
gain energy, eventually leading to finite

time blow-up

This is known as catastrophic filter
divergence.

Can we get around the problem by
tweaking the algorithm?
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Adaptive Covariance Inflation (Tong, Majda, K. 15)
We modify algorithm by introducing a covariance inflation :

Ĉn+1 7→ Ĉn+1 + λn+1I

where
λn+1 ∝ Θn+11(Θn+1 > Λ)

Θn+1 =

√√√√ 1

K

K∑
k=1

|y (k)
n+1 − HΨ(u

(k)
n )|2

and Λ is some constant threshold. If the predictions are near the
observations, then there is no inflation.

Thm. The modified EnKF inherits an energy principle from the model.

Ex |Ψ(x)|2 ≤ α|x |2 + β ⇒ En|u(k)
n+1|

2 ≤ α′|u(k)
n |2 + β′

Consequently, the modified EnKF is signal-filter ergodic.
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All my slides are on my website (www.dtbkelly.com) Thank you!
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