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Outline

• What is the motivation behind EnKF?

• What can we prove about EnKF?

David Kelly (Warwick) Catastrophic EnKF November 3, 2013 2 / 20



The filtering problem

We have a deterministic model

dv

dt
= F (v) with v0 ∼ N(m0,C0) .

We will denote v(t) = Ψt(v0). Think of this as very high dimensional
and nonlinear.

We want to estimate v j = v(jh) for some h > 0 and j = 0, 1, . . . , J given
the observations

y j = Hv j + ξj for ξj iid N(0, Γ).
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We can write down the condtional density
using Bayes’ formula ...

But it’s horrible.
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For linear models, one can draw samples,
using the Randomized Maximum

Likelihood method.
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RML method

Let u ∼ N(m̂, Ĉ ) and η ∼ N(0, Γ). We make an observation

y = H(u) + η .

We want the conditional distribution of u given y . This is called an
inverse problem.

For linear models, RML takes a sample

{û(1), . . . , û(K)} ∼ N(m̂, Ĉ )

and turns them into a sample

{u(1), . . . , u(K)} ∼ u|y
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RML method: How does it work?

Along with the prior sample {û(1), . . . , û(K)}, we create artificial
observations {y (1), . . . , y (K)} where

y (k) = y + η(k) where η(k) ∼ N(0, Γ) i.i.d

Then define u(k) using the Bayes formula update, with (û(k), y (k))

u(k) = û(k) + G (û)(y (k) − Hû(k)) .

Where the “Kalman Gain” G (û) is computing using the real covariance of
the prior û.
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EnKF uses the same method, but with an
approximation of the covariance in the

Kalman gain.
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The set-up for EnKF

Suppose we are given the ensemble {u(1)
j , . . . , u

(K)
j } at time j . For each

particle, we create an artificial observation

y
(k)
j+1 = y j+1 + ξ

(k)
j+1 , ξ

(k)
j+1 iid N(0, Γ).

We update each particle using the Kalman update

u
(k)
j+1 = Ψh(u

(k)
j ) + G (uj)

(
y
(k)
j+1 − HΨh(u

(k)
j )
)
,

where G (uj) is the Kalman gain computed using the forecasted
ensemble covariance

Ĉj+1 =
1

K

K∑
k=1

(Ψh(u
(k)
j )−Ψh(uj))T (Ψh(u

(k)
j )−Ψh(uj)) .

David Kelly (Warwick) Catastrophic EnKF November 3, 2013 9 / 20



There aren’t many theorems about
EnKF.
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Filter divergence

It has been observed (?) that the ensemble can blow-up (ie. reach
machine-infinity) in finite time, even when the model has nice bounded
solutions.

This is known as catastrophic filter divergence.

It is suggested in (?) that this is caused by numerically integrating a
stiff-system. Our aim is to “prove” this.

? Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).
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Assumptions (†)

1 - We make a dissipativity assumption on F . Namely that

F (·) = A ·+B(·, ·)

with A linear elliptic and B bilinear, satisfying certain estimates and
symmetries.

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.

2 - The observation operator H = Id and the noise covariance Γ = γId
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Discrete time results

For a fixed time-step h > 0 we can prove

Theorem (AS,DK)

If (†) then there exists constant β such that

E|u(k)
j |

2 ≤ e2βjhE|u(k)
0 |

2 + 2Kγ2
(

e2βjh − 1

e2βh − 1

)

Rmk. This becomes useless as h→ 0
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For observations with h� 1, we need
another approach.
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The EnKF equations look like a discretization

Recall the ensemble update equation

u
(k)
j+1 = Ψh(u

(k)
j ) + G (uj)

(
y
(k)
j+1 − HΨh(u

(k)
j )
)

= Ψh(u
(k)
j ) + Ĉj+1HT (HT Ĉj+1H + Γ)−1

(
y
(k)
j+1 − HΨh(u

(k)
j )
)

Subtract u
(k)
j from both sides and divide by h

u
(k)
j+1 − u

(k)
j

h
=

Ψh(u
(k)
j )− u

(k)
j

h

+ Ĉj+1HT (hHT Ĉj+1H + hΓ)−1
(

y
(k)
j+1 − HΨh(u

(k)
j )
)

Clearly we need to rescale the noise (ie. Γ).
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Continuous-time limit
If we set Γ = h−1Γ0 and substitute y

(k)
j+1, we obtain

u
(k)
j+1 − u

(k)
j

h
=

Ψh(u
(k)
j )− u

(k)
j

h
+ Ĉj+1HT (hHT Ĉj+1H + Γ0)−1(

Hv + h−1/2Γ
1/2
0 ξj+1 + h−1/2Γ

1/2
0 ξ

(k)
j+1 − HΨh(u

(k)
j )
)

But we know that
Ψh(u

(k)
j ) = u

(k)
j + O(h)

and

Ĉj+1 =
1

K

K∑
k=1

(Ψh(u
(k)
j )−Ψh(uj))T (Ψh(u

(k)
j )−Ψh(uj))

=
1

K

K∑
k=1

(u
(k)
j − uj)

T (u
(k)
j − uj) + O(h) = C (uj) + O(h)
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Continuous-time limit

We end up with

u
(k)
j+1 − u

(k)
j

h
=

Ψh(u
(k)
j )− u

(k)
j

h
− C (uj)HTΓ−1

0 H(u
(k)
j − vj)

+ C (uj)HTΓ−1
0

(
h−1/2ξj+1 + h−1/2ξ

(k)
j+1

)
+ O(h)

This looks like a numerical scheme for

du(k)

dt
= F (u(k))− C (u)HTΓ−1

0 H(u(k) − v) (•)

+ C (u)HTΓ
−1/2
0

(
dW (k)

dt
+

dB

dt

)
.
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Properties of the limiting equation

du(k)

dt
= F (u(k))− C (u)HTΓ−1

0 H(u(k) − v) (•)

+ C (u)HTΓ
−1/2
0

(
dW (k)

dt
+

dB

dt

)
.

1 - Extra dissipation term only sees differences in observed space

2 - Extra dissipation only occurs in the space spanned by ensemble

3 - If F were linear, the equation for the mean is the equation for the
classical Kalman filter, with an added sampling error.
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Continuous-time results

Theorem (AS,DK)

Suppose the framework satisfies (†) and {u(k)}Kk=1 satisfy (•). Let

e(k) = u(k) − v .

Then there exists constant β such that

E
K∑

k=1

|e(k)(t)|2 ≤
(

E
K∑

k=1

|e(k)(0)|2
)

exp (βt) .
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Summary + Future Work

(1) Writing down an SDE/SPDE allows us to see the important
quantities in the algorithm.

(2) Does not “prove” that catastrophic filter divergence is a
numerical phenomenon, but is a decent starting point.

(1) Improve the condition on H.

(2) If we can measure the important quantities, then we can test the
performance during the algorithm.

(3) Suggests new EnKF-like algorithms, for instance by discretising
the stochastic PDE in a more numerically stable way.
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