EnKF and Catastrophic filter divergence

David Kelly Andrew Stuart

Kody Law

Mathematics Institute University of Warwick Coventry UK CV4 7AL

dtbkelly@gmail.com

November 3, 2013

DAday, November 2013, UNC Chapel Hill.

David Kelly (Warwick)

Outline

- What is the motivation behind EnKF?
- What can we **prove** about EnKF?

The filtering problem

We have a deterministic model

$$rac{d\mathbf{v}}{dt} = F(\mathbf{v}) \quad ext{with } \mathbf{v}_0 \sim N(m_0, C_0) \ .$$

We will denote $v(t) = \Psi_t(v_0)$. Think of this as very high dimensional and nonlinear.

We want to estimate $v_j = v(jh)$ for some h > 0 and j = 0, 1, ..., J given the observations

$$\mathbf{y}_j = H\mathbf{v}_j + \xi_j$$
 for ξ_j iid $N(0, \Gamma)$.

We can write down the conditonal density using **Bayes' formula** ...

But it's horrible.

David Kelly (Warwick)

Catastrophic EnKF

November 3, 2013 4 / 20

For linear models, one can draw samples, using the Randomized Maximum Likelihood method.

RML method

Let $u \sim N(\widehat{m}, \widehat{C})$ and $\eta \sim N(0, \Gamma)$. We make an observation $\mathbf{v} = H(u) + \eta$.

We want the conditional distribution of u given y. This is called an **inverse problem**.

For linear models, RML takes a sample

$$\{\widehat{u}^{(1)},\ldots,\widehat{u}^{(K)}\}\sim N(\widehat{m},\widehat{C})$$

and turns them into a sample

$$\{u^{(1)},\ldots,u^{(K)}\}\sim u|y$$

David Kelly (Warwick)

RML method: How does it work?

Along with the prior sample $\{\hat{u}^{(1)}, \ldots, \hat{u}^{(K)}\}\)$, we create **artificial observations** $\{y^{(1)}, \ldots, y^{(K)}\}\)$ where

$$\mathbf{y}^{(k)} = \mathbf{y} + \eta^{(k)}$$
 where $\eta^{(k)} \sim N(0, \Gamma)$ i.i.d

Then define $u^{(k)}$ using the **Bayes formula** update, with $(\hat{u}^{(k)}, y^{(k)})$

$$u^{(k)} = \widehat{u}^{(k)} + G(\widehat{u})(y^{(k)} - H\widehat{u}^{(k)}).$$

Where the "Kalman Gain" $G(\hat{u})$ is computing using the **real** covariance of the prior \hat{u} .

EnKF uses the same method, but with an **approximation** of the covariance in the Kalman gain.

The set-up for EnKF

Suppose we are given the ensemble $\{u_j^{(1)}, \ldots, u_j^{(K)}\}$ at time j. For each particle, we create an **artificial observation**

$$y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}$$
, $\xi_{j+1}^{(k)}$ iid $N(0, \Gamma)$.

We update each particle using the Kalman update

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) ,$$

where $G(u_j)$ is the Kalman gain computed using the forecasted ensemble covariance

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(\underline{u}_j^{(k)}) - \overline{\Psi_h(\underline{u}_j)})^T (\Psi_h(\underline{u}_j^{(k)}) - \overline{\Psi_h(\underline{u}_j)}) .$$

There aren't many **theorems** about EnKF.

David Kelly (Warwick)

Catastrophic EnKF

November 3, 2013 10 / 20

Filter divergence

It has been observed (\star) that the ensemble can **blow-up** (ie. reach machine-infinity) in **finite time**, even when the model has nice bounded solutions.

This is known as catastrophic filter divergence.

It is suggested in (\star) that this is caused by numerically integrating a stiff-system. Our aim is to "prove" this.

★ Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).

David Kelly (Warwick)

Assumptions (†)

1 - We make a dissipativity assumption on F. Namely that

$$F(\cdot) = A \cdot + B(\cdot, \cdot)$$

with A linear elliptic and B bilinear, satisfying certain estimates and symmetries.

- Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.
- **2** The observation operator H = Id and the noise covariance $\Gamma = \gamma Id$

Discrete time results

For a fixed time-step h > 0 we can prove

Theorem (AS,DK) If (†) then there exists constant β such that $\mathbf{E}|u_{j}^{(k)}|^{2} \leq e^{2\beta jh} \mathbf{E}|u_{0}^{(k)}|^{2} + 2K\gamma^{2} \left(\frac{e^{2\beta jh}-1}{e^{2\beta h}-1}\right)$

Rmk. This becomes useless as $h \rightarrow 0$

For observations with $h \ll 1$, we need another approach.

The EnKF equations look like a discretization

Recall the ensemble update equation

$$\begin{aligned} u_{j+1}^{(k)} &= \Psi_h(u_j^{(k)}) + G(u_j) \left(\mathbf{y}_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \\ &= \Psi_h(u_j^{(k)}) + \widehat{C}_{j+1} H^T (H^T \widehat{C}_{j+1} H + \Gamma)^{-1} \left(\mathbf{y}_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \end{aligned}$$

Subtract $u_i^{(k)}$ from both sides and divide by h

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} \\ + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + h\Gamma)^{-1}\left(\mathbf{y}_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

Clearly we need to rescale the noise (ie. Γ).

David Kelly (Warwick)

Continuous-time limit

If we set $\Gamma = h^{-1}\Gamma_0$ and substitute $y_{j+1}^{(k)}$, we obtain

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + \Gamma_{0})^{-1} \\ \left(H_{V} + h^{-1/2}\Gamma_{0}^{1/2}\xi_{j+1} + h^{-1/2}\Gamma_{0}^{1/2}\xi_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

But we know that

$$\Psi_h(\boldsymbol{u}_j^{(k)}) = \boldsymbol{u}_j^{(k)} + O(h)$$

and

$$\begin{split} \widehat{C}_{j+1} &= \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}) \\ &= \frac{1}{K} \sum_{k=1}^{K} (u_j^{(k)} - \overline{u_j})^T (u_j^{(k)} - \overline{u_j}) + O(h) = C(u_j) + O(h) \end{split}$$

Continuous-time limit

We end up with

$$\frac{u_{j+1}^{(k)} - u_j^{(k)}}{h} = \frac{\Psi_h(u_j^{(k)}) - u_j^{(k)}}{h} - C(u_j)H^T\Gamma_0^{-1}H(u_j^{(k)} - v_j) + C(u_j)H^T\Gamma_0^{-1}\left(h^{-1/2}\xi_{j+1} + h^{-1/2}\xi_{j+1}^{(k)}\right) + O(h)$$

This looks like a numerical scheme for

$$\frac{du^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - v) \qquad (\bullet)$$
$$+ C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{dW^{(k)}}{dt} + \frac{dB}{dt}\right) .$$

Properties of the limiting equation

$$\frac{d u^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - v) \qquad (\bullet) \\ + C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{dW^{(k)}}{dt} + \frac{dB}{dt}\right) .$$

Extra dissipation term only sees differences in observed space
Extra dissipation only occurs in the space spanned by ensemble
If *F* were linear, the equation for the mean is the equation for the classical Kalman filter, with an added sampling error.

Continuous-time results

Theorem (AS,DK)

Suppose the framework satisfies (†) and $\{u^{(k)}\}_{k=1}^{K}$ satisfy (•). Let

 $\mathbf{e}^{(k)} = \mathbf{u}^{(k)} - \mathbf{v} \; .$

Then there exists constant β such that

$$\mathsf{E}\sum_{k=1}^{K} |e^{(k)}(t)|^2 \leq \left(\mathsf{E}\sum_{k=1}^{K} |e^{(k)}(0)|^2\right) \exp\left(\beta t\right) \ .$$

Summary + Future Work

(1) Writing down an SDE/SPDE allows us to see the **important quantities** in the algorithm.

(2) Does not "prove" that catastrophic filter divergence is a numerical phenomenon, but is a decent starting point.

(1) Improve the condition on H.

(2) If we can **measure** the important quantities, then we can test the performance during the algorithm.

(3) Suggests new EnKF-like algorithms, for instance by discretising the stochastic PDE in a more **numerically stable** way.