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Outline

e What is the motivation behind EnKF?
e What can we prove about EnKF?
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The filtering problem

We have a deterministic model

% = F(v) with vg ~ N(m07 CO) .

We will denote v(t) = W¢(vp). Think of this as very high dimensional
and nonlinear.

We want to estimate v; = v(jh) for some h>0and j =0,1,...,J given
the observations

yj=Hvj+¢& for & iid N(O,T).
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We can write down the condtional density
using Bayes’ formula ...

But it's horrible.
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For linear models, one can draw samples,
using the Randomized Maximum
Likelihood method.
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RML method

Let u ~ N(m, E) and n ~ N(0,T). We make an observation
y=H(u)+n.

We want the conditional distribution of u given y. This is called an
inverse problem.

For linear models, RML takes a sample
{a®, .. 3Ry ~ N, C)
and turns them into a sample

{u(l),...,u(K)}~u|y
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RML method: How does it work?

Along with the prior sample {Z(), ... G(K)}, we create artificial
observations {y() ... y(K)} where

W) =y 49 where nd) ~ N(0,T) i.id

y
Then define u(k) using the Bayes formula update, with (4(¥), (¥))
uk) =30+ 6@ (R — HakW) |

Where the “Kalman Gain” G(u) is computing using the real covariance of
the prior u.
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EnKF uses the same method, but with an
approximation of the covariance in the
Kalman gain.
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The set-up for EnKF

Suppose we are given the ensemble {uj(-l), ol uj(-K)
particle, we create an artificial observation

y§+)1 = )/j+1 +$j+1 5 f( ) iid N(O r)

We update each particle using the Kalman update
k k
ok = () + 6(w) (I = Hw(ul)) |

where G(uj) is the Kalman gain computed using the forecasted
ensemble covariance

zm () = Wh(u) T (W) = Wh(yy)) -
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There aren't many theorems about
EnKF.
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Filter divergence

It has been observed (x) that the ensemble can blow-up (ie. reach
machine-infinity) in finite time, even when the model has nice bounded
solutions.

This is known as catastrophic filter divergence.

It is suggested in (%) that this is caused by numerically integrating a
stiff-system. Qur aim is to “prove” this.

* Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).
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Assumptions (1)

1 - We make a dissipativity assumption on F. Namely that
F()=A+B(.)

with A linear elliptic and B bilinear, satisfying certain estimates and
symmetries.

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.

2 - The observation operator H = Id and the noise covariance [ = v/d
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Discrete time results

For a fixed time-step h > 0 we can prove

Theorem (AS,DK)
If () then there exists constant (3 such that

. 28jh _ 1
k K e
E|uj(. )]2 < ez'BJhE|u(() )|2 + 2K~ <62[3h 1)

Rmk. This becomes useless as h — 0
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For observations with h << 1, we need
another approach.
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The EnKF equations look like a discretization

Recall the ensemble update equation

ufh = wa () + 6 () (V) — Hun(f))
= Vi( J(k))+ CiraHT(HT GpaH+T) 7! (yj(+)1 HWV (u (k))>

Subtract ut*) from both sides and divide by h

Uipp — 4

h h
+ GpaH T (hHT GiaH + Al ()/J(-i)l - H‘Uh(uj(-k))>

Oy, Ry (0
J

Clearly we need to rescale the noise (ie. I).
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Continuous-time limit

If we set I = h™ 1y and substitute yJ(-k)l, we obtain

k k k k
u = () - o

o h
(Hv+ h12rg 2+ h1 22— Hwy (o))

+ G HT(hHT G H + o)

J

But we know that

and
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Continuous-time limit

We end up with

u k) (k) (k) (k)
J+1h uj — Wh(uf 2_ J C( )HTF lH( (k) Vj)

+ C(uj)HTFal <h 1/25 L+ h—1/251+1> + O(h)

This looks like a numerical scheme for

dut) (k) Tr=1py(u®)
o = F(u'") = C(u)H Ty H(W'™ —v) (o)
_1p [(dWRdB
HTroW2 (222 92
+ C(u) 0 ™ + p
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Properties of the limiting equation

du(k)
dt

= Fu) = CH T HW® —v)  (9)
dWw dB>

C(u)HTTy "> =
+C(H T dt dt
1 - Extra dissipation term only sees differences in observed space

2 - Extra dissipation only occurs in the space spanned by ensemble

3 - If F were linear, the equation for the mean is the equation for the
classical Kalman filter, with an added sampling error.
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Continuous-time results

Theorem (AS,DK)
Suppose the framework satisfies (1) and {u(K)}K_  satisfy (o). Let

o) — (0 _

Then there exists constant 3 such that

K K
£ 100 < (EX €M) exp (51)
k=1 k=1
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Summary + Future Work

(1) Writing down an SDE/SPDE allows us to see the important
quantities in the algorithm.

(2) Does not “prove” that catastrophic filter divergence is a
numerical phenomenon, but is a decent starting point.
(1) Improve the condition on H.

(2) If we can measure the important quantities, then we can test the
performance during the algorithm.

(3) Suggests new EnKF-like algorithms, for instance by discretising
the stochastic PDE in a more numerically stable way.
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