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Talk overview

The Ensemble Kalman Filter (EnKF) is a data assimilation
algorithm used for very high dimensional nonlinear models.

It is an ‘approximation’ of the Kalman filter.

EnKF inherits stability properties from the underlying
model.
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The filtering problem

We have a model (deterministic, for now)

dv

dt
= F (v) with v0 ∼ N(m0,C0) .

We will denote v(t) = Ψt(v0). Think of this as very high dimensional
and nonlinear.

We want to estimate vn = v(nh) for some h > 0 and n = 0, 1, 2, . . .
given the observations

yn = Hvn + ξn for ξn iid N(0, Γ).
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In the linear setting, the Kalman filter gives an exact
expression for the posterior P(v n+1|y n+1, v n)

EnKF approximates this procedure in two ways: first the
posterior is represented empirically via samples and

second, the samples are not actually samples.
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Sampling from the posterior with linear model

Suppose we are given K samples {u(1)
n , . . . , u

(K)
n } from the time n

posterior. Here is how we turn them into samples from the n + 1 posterior.

For each ensemble member (sample), we create an artificial observation

y
(k)
n+1 = yn+1 + ξ

(k)
n+1 , ξ

(k)
n+1 iid N(0, Γ).

We update each member using the Kalman update

u
(k)
n+1 = Ψh(u

(k)
n ) + Gn

(
y
(k)
n+1 − HΨh(u

(k)
n )
)
,

where Gn is the Kalman gain matrix .
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The EnKF approximation

Suppose we are ‘approximate samples’ {u(1)
n , . . . , u

(K)
n } from the time n

posterior. For each ensemble member, we create an artificial observation

y
(k)
n+1 = yn+1 + ξ

(k)
n+1 , ξ

(k)
n+1 iid N(0, Γ).

We update each member using the Kalman update

u
(k)
n+1 = Ψh(u

(k)
n ) + G (un)

(
y
(k)
n+1 − HΨh(u

(k)
n )
)
,

where G (un) is the Kalman gain computed using the forecasted
ensemble covariance

Ĉn+1 =
1

K

K∑
k=1

(Ψh(u
(k)
n )−Ψh(un))T (Ψh(u

(k)
n )−Ψh(un)) .
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Stability properties of EnKF
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Stability #1: Model ‘dissipativity’ is
inherited by the filter.
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Assumptions on the dynamics

The state v satisfies an energy (dissipation) criterion:

En|vn+1|2 − |vn|2 ≤ −β|vn|2 + K

for some β ∈ (0, 1) and K > 0. En is expectation conditioned on
everything up to time n.

Eg. The finite dimensional SDE

dv

dt
+ Av + B(v , v) = f

with A linear elliptic, B is an energy preserving bilinearity, f is stochastic
forcing.

Nb. Infinite dimensions are possible, but not done here.
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Assumptions on the observations

The observation matrix H must be chosen in such a way that

En|Hvn+1|2 − |Hvn|2 ≤ −β|Hvn|2 + K

We call this the observable energy criterion.

ie. If there is an effective subspace controlling the dynamics then H
observes this subspace.

Eg. v = (v (1), v (2)) where v (1) are slow variables and v (2) are fast
variables. Suppose that Hv = v (1). The slow variables can be
approximated by an effective system dv

dt = F (v) which is dissipative.
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Theorem (Tong, Majda, K. ‘15)

The EnKF satisfies the energy criterion

En (En+1)− En ≤ −β′En + K ′

where En = |Hvn|2 +
∑K

k=1 λ|Hu
(k)
n | and β′ ∈ (0, 1), K ′ > 0.

Consequently, the observed components of EnKF are bounded (in
mean square sense) uniformly in time:

sup
n≥1

K∑
k=1

E|Hu
(k)
n |2 <∞ .
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Rmk 1. The bound may seem trivial, but EnKF is known
(numerically) to explode to machine infinity, for very turbulent models
(Harlim, Majda ‘11 & Gottwald, Majda ‘13).

Rmk 2. Improvement on (K, Law, Stuart ‘14) which shows at most
exponential growth in the fully observed case.
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Proving it

From the update equation for EnKF

Hu
(k)
n+1 = (I + HĈn+1HT )−1HΨh(u

(k)
n ) + HĈnHT (I + HĈn+1HT )−1y

(k)
n+1

In calculating En|u(k)
n+1|2, the first term is controlled using the observable

energy criterion and the second term is controlled using the observable
energy criterion + finite variance of the noise.
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Stability #2: Ergodicity of the model is
inherited by the filter.

David Kelly (Courant) Stability of EnKF July 8, 2015 14 / 20



Assumptions for ergodicity

Assumption 1 - The model-ensemble process (v , u(1), . . . , u(K)) has
a Lyapnuov function E with compact sublevel sets.

Assumption 2 - The noise in the model is non-degenerate and has a
density wrt Lebesgue.

Eg. If H is full rank and the model is the SDE

dv = b(v)dt + σdW

with b(u) · u ≤ −α|u|2 + c and σ full rank.
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Theorem (Tong, Majda, K. 15)

The model-ensemble process (vn, u
(1)
n , . . . , u

(K)
n ) is geometrically

ergodic.

ie. Let Pnµ be the law of (vn, u
(1)
n , . . . , u

(K)
n ) initialized with

(v0, u
(1)
0 , . . . , u

(K)
0 ) ∼ µ, then there exists an unique probability

measure π with
|Pnµ− π|TV ≤ Cγn

for some γ ∈ (0, 1).
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How does it work?

We use the Meyn-Tweedie strategy: Lyapunov function + minorization
condition implies geometric ergodicity.

The Lyapunov function is an assumption for us. Sufficient to check the
minorization condition.

For a Markov chain X n, with Kernel P, the minorization condition boils
down to checking the following: There exists a compact set C such that:

1 - There is an ‘intermediate point’ y∗ ∈ C such that for every
δ > 0, x ∈ C we have P(x ,Bδ(y∗)) > 0.
2 - The Markov kernel has a jointly continuous density wrt Lebesgue in a
nbhd of y∗.
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Minorization for EnKF

Recall that u
(k)
n+1 = Ψh(u

(k)
n ) + G (un)

(
y
(k)
n+1 − HΨh(u

(k)
n )
)

The Markov kernel for (vn, u
(1)
n , . . . , u

(K)
n ) can be written

P(x ,A) = Q(x , Γ−1(A)) where Q(x , ·) is a nice Markov kernel and Γ is a
nice function.

Q(x , ·) is described by the random mapping

(vn, u
(1)
n , . . . , u

(K)
n ) 7→ (Ψh(vn),Ψh(u

(1)
n ), . . . ,Ψh(u

(K)
n ), y

(1)
n+1, . . . , y

(K)
n+1)

and Γ by

(Ψh(vn),Ψh(u
(1)
n ), . . . ,Ψh(u

(K)
n ), z

(1)
n+1, . . . , z

(K)
n+1) 7→ (vn+1, u

(1)
n+1, . . . , u

(K)
n+1)
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Remarks and coming attractions

For EnKF, Ergodicity requires a Lyapunov function with compact sublevel
sets. On the face of it, this requires full rank H.

It is easy to tweak EnKF, via an adaptive inflation, so that it a Lyapnuov
function with compact sublevel sets for arbitrary H. Joint work with Majda, Tong. To appear on

my website soon.

When does EnKF get it wrong? What causes (catastrophic) filter
divergence?

We have built an extremely simple dissipative model for which EnKF
exhibits arbitrary long spells of exponential growth, for generic filter
initializations. Joint work with Majda, Tong. To appear on my website soon.
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Thank you!

Nonlinear stability and ergodicity of ensemble based Kalman
filters.

X. Tong, A. Majda, D. Kelly. (2015).

www.dtbkelly.com
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