EnKF and Catastrophic filter divergence

David Kelly

Andrew Stuart

Kody Law

Mathematics Department University of North Carolina Chapel Hill NC

dtbkelly.com

February 13, 2014

MURI workshop Courant institute, New York University.

David Kelly (UNC)

Catastrophic EnKF

The filtering problem

We have a deterministic model

$$rac{d\mathbf{v}}{dt} = F(\mathbf{v}) \quad ext{with } \mathbf{v}_0 \sim N(m_0, C_0) \ .$$

We will denote $v(t) = \Psi_t(v_0)$. Think of this as very high dimensional and nonlinear.

We want to estimate $v_j = v(jh)$ for some h > 0 and j = 0, 1, ..., J given the observations

$$\mathbf{y}_j = H\mathbf{v}_j + \xi_j$$
 for ξ_j iid $N(0, \Gamma)$.

We can write down the conditional density using **Bayes' formula** ...

But for high dimensional nonlinear systems it's horrible.

Alternatively, we can use **EnKF** to draw **approximate samples** from the posterior.

David Kelly (UNC)

Catastrophic EnKF

February 13, 2014 4 / 18

The set-up for EnKF

Suppose we are given the ensemble $\{u_j^{(1)}, \ldots, u_j^{(K)}\}$ at time j. For each particle, we create an **artificial observation**

$$y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}$$
, $\xi_{j+1}^{(k)}$ iid $N(0, \Gamma)$.

We update each particle using the Kalman update

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) ,$$

where $G(u_j)$ is the Kalman gain computed using the forecasted ensemble covariance

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(\boldsymbol{u}_j^{(k)}) - \overline{\Psi_h(\boldsymbol{u}_j)})^T (\Psi_h(\boldsymbol{u}_j^{(k)}) - \overline{\Psi_h(\boldsymbol{u}_j)}) .$$

There aren't many **theorems** about EnKF.

Ideally, we would like a theorem about **long time behaviour** of the filter for a finite ensemble size.

Filter divergence

It has been observed (\star) that when observations are **very frequent** the ensemble can **blow-up** (ie. reach machine-infinity) in **finite time**, even when the model has nice bounded solutions.

This is known as catastrophic filter divergence.

It is suggested in (\star) that this is caused by numerically integrating a stiff-system. Our aim is to "prove" this.

★ Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).

David Kelly (UNC)

Catastrophic EnKF

Assumptions on the dynamics

We make a **dissipativity** assumption on *F*. Namely that

$$F(\cdot) = A \cdot + B(\cdot, \cdot)$$

with A linear elliptic and B bilinear, satisfying certain estimates and symmetries.

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.

Discrete time results

For a fixed observation frequency h > 0 we can prove

Theorem (AS,DK) If $H = \Gamma = Id$ then there exists constant $\beta > 0$ such that $\mathbf{E}|u_j^{(k)}|^2 \le e^{2\beta jh} \mathbf{E}|u_0^{(k)}|^2 + 2K\gamma^2 \left(\frac{e^{2\beta jh} - 1}{e^{2\beta h} - 1}\right)$

Rmk. This becomes useless as $h \rightarrow 0$

David Kelly (UNC)

Catastrophic EnKF

February 13, 2014 9 / 18

For observations with $h \ll 1$, we need another approach.

David Kelly (UNC)

Catastrophic EnKF

February 13, 2014 10 / 18

The EnKF equations look like a discretization

Recall the ensemble update equation

$$\begin{aligned} u_{j+1}^{(k)} &= \Psi_h(u_j^{(k)}) + G(u_j) \left(\mathbf{y}_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \\ &= \Psi_h(u_j^{(k)}) + \widehat{C}_{j+1} H^T (H^T \widehat{C}_{j+1} H + \Gamma)^{-1} \left(\mathbf{y}_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \end{aligned}$$

Subtract $u_i^{(k)}$ from both sides and divide by h

$$\frac{\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + h\Gamma)^{-1}\left(\frac{\mathbf{y}_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

Clearly we need to rescale the noise (ie. Γ).

David Kelly (UNC)

Catastrophic EnKF

Continuous-time limit

If we set $\Gamma = h^{-1}\Gamma_0$ and substitute $y_{j+1}^{(k)}$, we obtain

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + \Gamma_{0})^{-1} \\ \left(H_{V} + h^{-1/2}\Gamma_{0}^{1/2}\xi_{j+1} + h^{-1/2}\Gamma_{0}^{1/2}\xi_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

But we know that

$$\Psi_h(\boldsymbol{u}_j^{(k)}) = \boldsymbol{u}_j^{(k)} + O(h)$$

and

$$\begin{split} \widehat{C}_{j+1} &= \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}) \\ &= \frac{1}{K} \sum_{k=1}^{K} (u_j^{(k)} - \overline{u_j})^T (u_j^{(k)} - \overline{u_j}) + O(h) = C(u_j) + O(h) \end{split}$$

Continuous-time limit

We end up with

$$\frac{u_{j+1}^{(k)} - u_j^{(k)}}{h} = \frac{\Psi_h(u_j^{(k)}) - u_j^{(k)}}{h} - C(u_j)H^T\Gamma_0^{-1}H(u_j^{(k)} - v_j) + C(u_j)H^T\Gamma_0^{-1}\left(h^{-1/2}\xi_{j+1} + h^{-1/2}\xi_{j+1}^{(k)}\right) + O(h)$$

This looks like a numerical scheme for Itô S(P)DE

$$\frac{d u^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - v) \qquad (\bullet)$$
$$+ C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{dW^{(k)}}{dt} + \frac{dB}{dt}\right) .$$

First observation: nudging

$$\frac{d u^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - v) \qquad (\bullet)$$
$$+ C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{dW^{(k)}}{dt} + \frac{dB}{dt}\right) .$$

- 1 Extra dissipation term only sees differences in observed space
- ${\bf 2}$ Extra dissipation only occurs in the space spanned by ensemble

Second observation: Kalman-Bucy limit

If F were linear and we write $m(t) = \frac{1}{K} \sum_{k=1}^{K} u^{(k)}(t)$ then

$$\frac{dm}{dt} = F(m) - C(u)H^{T}\Gamma_{0}^{-1}H(m-v) + C(u)H^{T}\Gamma_{0}^{-1/2}\frac{dB}{dt} + O(K^{-1/2}).$$

This is the equation for the **Kalman-Bucy** filter, with empirical covariance C(u). The remainder $O(K^{-1/2})$ can be thought of as a **sampling error**.

Continuous-time results

Theorem (AS,DK) Suppose that $\{u^{(k)}\}_{k=1}^{K}$ satisfy (•) with $H = \Gamma = Id$. Let $e^{(k)} = u^{(k)} - v$

Then there exists constant $\beta > 0$ such that

$$rac{1}{\mathcal{K}}\sum_{k=1}^{\mathcal{K}} \mathbf{\mathsf{E}}|e^{(k)}(t)|^2 \leq \left(rac{1}{\mathcal{K}}\sum_{k=1}^{\mathcal{K}} \mathbf{\mathsf{E}}|e^{(k)}(0)|^2
ight)\exp\left(eta t
ight) \;.$$

Why do we need $H = \Gamma = Id$?

In the equation

$$\frac{d u^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - \mathbf{v}) + C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{d W^{(k)}}{dt} + \frac{dB}{dt}\right)$$

The **energy** pumped in by the noise must be balanced by **contraction** of $(u^{(k)} - v)$. So the operator

$$C(\boldsymbol{u})H\Gamma_0^{-1}H$$

must be **positive-definite**.

Both C(u) and $H\Gamma_0^{-1}H$ are pos-def, but this doesn't guarantee the same for the **product**!

David Kelly (UNC)

Catastrophic EnKF

.

Summary + Future Work

(1) Writing down an SDE/SPDE allows us to see the **important quantities** in the algorithm.

(2) Does not "prove" that catastrophic filter divergence is a numerical phenomenon, but is a decent starting point.

(1) Improve the condition on H.

(2) If we can **measure** the important quantities, then we can test the performance during the algorithm.