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Talk outline

1. What is EnKF?

2. What is known about EnKF?

3. Can we use stochastic analysis to better
understand EnKF?
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The data assimilation problem

We have a model
dv

dt
= F (v) with v0 ∼ µ ,

with a flow v(t) = Ψt(v0). Think of this as very high dimensional,
nonlinear and possibly stochastic.

We want to estimate vn = v(nh) for some h > 0 and n = 0, 1, 2, . . .
given the observations

yn = Hvn + ξn for ξn iid N(0, Γ).
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To formulate a solution to this problem,
we write down the conditional density

using Bayes’ formula.
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Bayes’ formula filtering update

Let Y n = {y0, y1, . . . , yn}. We want to compute the conditional density
P(vn+1|Y n+1), using P(vn|Y n) and yn+1.

By Bayes’ formula, we have

P(vn+1|Y n+1) = P(vn+1|Y n, yn+1) ∝ P(yn+1|vn+1)P(vn+1|Y n)

But we need to compute the integral

P(vn+1|Y n) =

∫
P(vn+1|Y n, vn)P(vn|Y n)dvn .

For high dimensional nonlinear systems, this is computationally infeasible.
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The Kalman Filter

For linear models, this integral is Gaussian and can be computed explicitly.
The conditional density is characterized by its mean and covariance

mn+1 = m̂n − Gn+1(Hm̂n − yn+1)

Cn+1 = (I − Gn+1H)Ĉn+1 ,

where

• (m̂n+1, Ĉn+1) is the forecast mean and covariance.

• Gn+1 = Ĉn+1H
T (Γ + HĈn+1H

T )−1 is the Kalman gain.

The procedure of updating (mn,Cn) 7→ (mn+1,Cn+1) is known as the
Kalman filter.

When applied to nonlinear models, this is called the Extended Kalman
filter.
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For high dimensional non-linear systems,
calculations are expensive. A better idea

is to sample.
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The Ensemble Kalman Filter (EnKF)
is a low dimensional sampling algorithm.

(Evensen ’94)

EnKF generates an ensemble of
approximate samples from the

posterior.
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For linear models, one can draw samples,
using the Randomized Maximum

Likelihood method.
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RML method

Let u ∼ N(m̂, Ĉ ) and η ∼ N(0, Γ). We make an observation

y = Hu + η .

We want the conditional distribution of u|y . This is called an inverse
problem.

RML takes a sample

{û(1), . . . , û(K)} ∼ N(m̂, Ĉ )

and turns them into a sample

{u(1), . . . , u(K)} ∼ u|y
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RML method: How does it work?

Along with the prior sample {û(1), . . . , û(K)}, we create artificial
observations {y (1), . . . , y (K)} where

y (k) = y + η(k) where η(k) ∼ N(0, Γ) i.i.d

Then define u(k) using the Kalman mean update, with (û(k), y (k))

u(k) = û(k) − G (û)(Hû(k) − y (k)) .

Where the Kalman gain G (û) is computing using the covariance of the
prior û.

The set {u(1), . . . , u(K)} are exact samples from u|y .
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EnKF uses the same method, but with an
approximation of the covariance in the

Kalman gain.

David Kelly (NYU) EnKF April 10, 2015 12 / 32



The set-up for EnKF

Suppose we are given the ensemble {u(1)n , . . . , u
(K)
n }. For each ensemble

member, we create an artificial observation

y
(k)
n+1 = yn+1 + ξ

(k)
n+1 , ξ

(k)
n+1 iid N(0, Γ).

We update each particle using the Kalman update

u
(k)
n+1 = Ψh(u

(k)
n )− G (un)

(
HΨh(u

(k)
n )− y

(k)
n+1

)
,

where G (un) is the “Kalman gain” computed using the forecasted
ensemble covariance

Ĉn+1 =
1

K

K∑
k=1

(Ψh(u
(k)
n )−Ψh(un))T (Ψh(u

(k)
n )−Ψh(un)) .
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What do we know about EnKF?
Not much.

Theorem : For linear forecast models,
ENKF → KF as K →∞

(Le Gland et al / Mandel et al. 09’).
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Ideally, we would like results with a finite
ensemble size.

1 - Filter divergence

2 - Filter stability

3 - Continuous time scaling limit
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1 - Filter divergence

In certain situations, it has been observed (?) that the ensemble can
blow-up (ie. reach machine-infinity) in finite time, even when the model
has nice bounded solutions.

This is known as catastrophic filter divergence.

Does this have a dynamical justification or is it a numerical artefact?

? Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).
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Assumptions on the model

We make a dissipativity assumption on the model. Namely that

dv

dt
+ Av + B(v , v) = f

with A linear elliptic and B bilinear, satisfying certain estimates and
symmetries.

This guarantees the absorbing ball property (the system has a Lyapunov
function).

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.
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Discrete time results

Fix an observation frequency h > 0. Let e
(k)
n = u

(k)
n − vn .

Theorem (K, Law, Stuart 14’)

If H = Id, Γ = Id then there exists constant β > 0 such that

E|e(k)n |2 ≤ e2βnhE|e(k)0 |
2 + 2Kγ2

(
e2βnh − 1

e2βh − 1

)

Rmk. Thm (Tong, Majda, K 15) supn≥1 E|u(k)n |2 <∞
The ensemble inherits the absorbing ball property from the model.
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Discrete time results with variance inflation
Suppose we replace

Ĉn+1 7→ α2I + Ĉn+1

at each update step. This is known as additive variance inflation.

Theorem (K, Law, Stuart 14’)

If H = Id , Γ = γ2Id then there exists constant β > 0 such that

E|e(k)n |2 ≤ θnE|e(k)0 |
2 + 2Kγ2

(
1− θn

1− θ

)
where θ = γ2e2βh

α2+γ2
. In particular, if we pick α large enough (so

that θ < 1) then

lim
n→∞

E|e(k)n |2 ≤
2Kγ2

1− θ
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2 - Filter stability

Is the filter stable with respect to its initial data
(u

(1)
0 , . . . , u

(K )
0 )? Will initialization errors dissipate or

propagate over time?

This can be answered by verifying ergodicity.
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Geometric ergodicity

In addition to the dissipativity assumption, assume the model is
stochastic with a positive density everywhere.

Theorem (Tong, Majda, K 15)

If H = Id then the signal-ensemble process (vn, u
(1)
n , . . . , u

(K)
n ) is

geometrically ergodic. That is, there exists unique stationary
measure ρ, θ ∈ (0, 1) such that, given any initialization µ

|Pnµ− ρ| ≤ Cθn

where Pnµ is the distribution (vn, u
(1)
n , . . . , u

(K)
n ) initialized with µ.

Rmk. The H = Id is not really needed. Sufficient to have a Lyapunov

function for (vn, u
(1)
n , . . . , u

(K)
n ).
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3 - Scaling limit

Can we learn anything from the h→ 0
scaling limit of the algorithm?
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The EnKF equations look like a discretization

Recall the ensemble update equation

u
(k)
n+1 = Ψh(u

(k)
n ) + G (un)

(
y
(k)
n+1 − HΨh(u

(k)
n )
)

= Ψh(u
(k)
n ) + Ĉn+1H

T (HT Ĉn+1H + Γ)−1
(
y
(k)
n+1 − HΨh(u

(k)
n )
)

Subtract u
(k)
n from both sides and divide by h

u
(k)
n+1 − u

(k)
n

h
=

Ψh(u
(k)
n )− u

(k)
n

h

+ Ĉn+1H
T (hHT Ĉn+1H + hΓ)−1

(
y
(k)
n+1 − HΨh(u

(k)
n )
)

Clearly we need to rescale the noise (ie. Γ).
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Continuous-time limit
If we set Γ = h−1Γ0 and substitute y

(k)
n+1, we obtain

u
(k)
n+1 − u

(k)
n

h
=

Ψh(u
(k)
n )− u

(k)
n

h
+ Ĉn+1H

T (hHT Ĉn+1H + Γ0)−1(
Hv + h−1/2Γ

1/2
0 ξn+1 + h−1/2Γ

1/2
0 ξ

(k)
n+1 − HΨh(u

(k)
n )
)

But we know that
Ψh(u

(k)
n ) = u

(k)
n + O(h)

and

Ĉn+1 =
1

K

K∑
k=1

(Ψh(u
(k)
n )−Ψh(un))T (Ψh(u

(k)
n )−Ψh(un))

=
1

K

K∑
k=1

(u
(k)
n − un)T (u

(k)
n − un) + O(h) = C (un) + O(h)
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Continuous-time limit

We end up with

u
(k)
n+1 − u

(k)
n

h
=

Ψh(u
(k)
n )− u

(k)
n

h
− C (un)HTΓ−10 H(u

(k)
n − vn)

+ C (un)HTΓ−10

(
h−1/2ξn+1 + h−1/2ξ

(k)
n+1

)
+ O(h)

This looks like a numerical scheme for Itô S(P)DE

du(k)

dt
= F (u(k))− C (u)HTΓ−10 H(u(k) − v) (•)

+ C (u)HTΓ
−1/2
0

(
dB

dt
+

dW (k)

dt

)
.
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Nudging

du(k)

dt
= F (u(k))− C (u)HTΓ−10 H(u(k) − v) (•)

+ C (u)HTΓ
−1/2
0

(
dB

dt
+

dW (k)

dt

)
.

1 - Extra dissipation term only sees differences in observed space

2 - Extra dissipation only occurs in the space spanned by ensemble
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Kalman-Bucy limit

If F were linear and we write m(t) = 1
K

∑K
k=1 u

(k)(t) then

dm

dt
= F (m)− C (u)HTΓ−10 H(m − v)

+ C (u)HTΓ
−1/2
0

dB

dt
+ O(K−1/2) .

This is the equation for the Kalman-Bucy filter, with empirical covariance
C (u). The remainder O(K−1/2) can be thought of as a sampling error.
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Continuous-time results

Theorem (K, Law, Stuart)

Suppose that{u(k)}Kk=1 satisfy (•) with H = Γ = Id. Let

e(k) = u(k) − v .

Then there exists constant β > 0 such that

1

K

K∑
k=1

E|e(k)(t)|2 ≤
(

1

K

K∑
k=1

E|e(k)(0)|2
)

exp (βt) .

Rmk. Thm (Tong, Majda, K 15) supt≥0 E|u(k)(t)|2 <∞
The ensemble inherits the absorbing ball property from the model.
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Why do we need H = Γ = Id ?

In the equation

du(k)

dt
= F (u(k))− C (u)HTΓ−10 H(u(k) − v)

+ C (u)HTΓ
−1/2
0

(
dW (k)

dt
+

dB

dt

)
.

The energy pumped in by the noise must be balanced by contraction of
(u(k) − v). So the operator

C (u)HTΓ−10 H

must be positive-definite.

Both C (u) and HTΓ−10 H are pos-def, but this doesn’t guarantee the same
for the product.
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Testing stability on the fly

Suppose we can actually measure the spectrum of the operator

C (u)HTΓ−10 H

whilst the algorithm is running. If we know that it is pos-def, then the
filter must not be blowing up.

If we knew that
C (u)HTΓ−10 H ≥ λ(t) > 0 .

Then we can say even more (eg. stability).
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Summary + Future Work

(1) Cannot “prove” that catastrophic filter divergence is a
numerical phenomenon, but idecent starting point.

(2) If the filter isn’t blowing up, then it should be stable.

(3) Writing down an SDE/SPDE allows us to see the important
quantities in the algorithm.

(1) Improve the condition on H? Seems hard. Change the algorithm
instead. (Ongoing work with Majda, Tong)
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Thank you!

Well-posedness and accuracy of the ensemble Kalman filter in
discrete and continuous time.

D. Kelly, K.Law, A. Stuart.
Nonlinearity 2014.

Stability and geometric ergodicity of ensemble based Kalman
methods.

X. Tong, A. Majda, D. Kelly.

www.dtbkelly.com
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