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What is data assimilation?

Suppose u satisfies
du

dt
= F (u)

with some unknown initial condition u0. We are most interested in
geophysical models, so think high dimensional, nonlinear, possibly
stochastic.

Suppose we make partial, noisy observations at times t = h, 2h, . . . , nh, . . .

yn = Hun + ξn

where H is a linear operator (think low rank projection), un = u(nh), and
ξn ∼ N(0, Γ) iid.

The aim of data assimilation is to say something about the conditional
distribution of un given the observations {y1, . . . , yn}
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Illustration (Initialization)
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Figure: The blue circle
represents our guess of
u0. Due to the
uncertainty in u0, this is
a probability measure.
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Illustration (Forecast step)
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Figure: Apply the time h
flow map Ψ. This
produces a new
probability measure
which is our forecasted
estimate of u1. This is
called the forecast step.
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Illustration (Make an observation)
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Figure: We make an
observation
y1 = Hu1 + ξ1. In the
picture, we only observe
the x variable.
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Illustration (Analysis step)
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Figure: Using Bayes
formula we compute the
conditional distribution
of u1|y1. This new
measure (called the
posterior) is the new
estimate of u1. The
uncertainty of the
estimate is reduced by
incorporating the
observation. The
forecast distribution
steers the update from
the observation.
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Bayes’ formula filtering update

Let Y n = {y0, y1, . . . , yn}. We want to compute the conditional density
P(un+1|Y n+1), using P(un|Y n) and yn+1.

By Bayes’ formula, we have

P(un+1|Y n+1) = P(un+1|Y n, yn+1) ∝ P(yn+1|un+1)P(un+1|Y n)

But we need to compute the integral

P(un+1|Y n) =

∫
P(un+1|Y n, un)P(un|Y n)dun .

In geophysical models, we can have u ∈ RN where N = O(108). The
rigorous Bayesian approach is computationally infeasible.
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Outline

1 - EnKF: a practical but imperfect
filter.

2 - Can we prove anything about
EnKF?

3 - Can we build better filters?
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The Kalman Filter

For linear models, the Bayesian integral is Gaussian and can be computed
explicitly. The conditional density is characterized by its mean and
covariance

mn+1 = (1− Kn+1H)m̂n + Kn+1Hyn+1

Cn+1 = (I − Kn+1H)Ĉn+1 ,

where

• (m̂n+1, Ĉn+1) is the forecast mean and covariance.

• Kn+1 = Ĉn+1H
T (Γ + HĈn+1H

T )−1 is the Kalman gain.

The procedure of updating (mn,Cn) 7→ (mn+1,Cn+1) is known as the
Kalman filter.
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Ensemble Kalman filter (Evensen 94)
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Figure: Start with K
ensemble members
drawn from some
distribution. Empirical
representation of u0.
The ensemble members
are denoted v

(k)
0 .

Only KN numbers are stored. Better than Kalman if K < N.
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Ensemble Kalman filter (Forecast step)
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Figure: Apply the
dynamics Ψ to each
ensemble member.
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Ensemble Kalman filter (Make obs)
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Figure: Make an
observation.

David Kelly (CIMS) Data assimilation October 29, 2015 7 / 22



Ensemble Kalman filter (Perturb obs)
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Figure: Turn the
observation into K
artificial observations by
perturbing by the same
source of observational
noise.

y
(k)
1 = y1 + ξ

(k)
1
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Ensemble Kalman filter (Analysis step)
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Figure: Update each
member using the
Kalman update formula.
The Kalman gain K 1 is
computed using the
ensemble covariance.

v
(k)
1 = (1− K 1H)Ψ(v

(k)
0 ) + K 1Hy

(k)
1 K 1 = Ĉ 1H

T (Γ + HĈ 1H
T )−1

Ĉ 1 =
1

K − 1

K∑
k=1

(Ψ(v
(k)
0 )−Ψ(v0))(Ψ(v

(k)
0 )−Ψ(v0))T
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Ensemble Kalman filter

The conditional distribution is represented empirically using an ensemble

{v (k)n }Kk=1.

When an observation is made, it is perturbed by an iid copy of the
observational noise

y
(k)
n+1 = yn+1 + ξ

(k)
n+1 .

Each ensemble member is updated using the ‘Kalman update’ formula

v
(k)
n+1 = (1− Kn+1H)Ψ(v

(k)
n ) + Kn+1Hy

(k)
n+1

and the Kalman gain is computed using the ensemble covariance

Kn+1 = Ĉn+1H
T (Γ + HĈn+1H

T )−1 .
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There are many good justifications for this algorithm:

• When the model is linear and K is large, the
ensemble members are exact samples from the
conditional distribution (Monte Carlo Kalman filter).

• EnKF is essentially a particle filter with constant
weights.

But there are no great justifications ...
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What can we prove about EnKF with fixed K?

We are interested in what we can prove in the practical
regime K fixed (and ideally K � N). We would like to
understand sufficient conditions for stability and
accuracy.

stability - The filter is ergodic; in the long run the filter
forgets initialization and noise in the observation / model.

accuracy - The filter concentrates around the true signal
(that is generating the observations) and uncertainty
reduces over time.
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Catastrophic filter divergence
Lorenz-96: u̇j = (uj+1 − uj−2)uj−1 − uj + F with j = 1, . . . , 40. Periodic
BCs. Observe every fifth node. (Harlim-Majda 10, Gottwald-Majda 12)

True solution in a bounded set, but filter blows up to machine infinity in
finite time!
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For complicated models, only
heuristic arguments offered as

explanation.
Can we prove it for a simpler constructive model?
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The rotate-and-lock map (K., Majda, Tong. PNAS 15.)

The model Ψ : R2 → R2 is a composition of two maps
Ψ(x , y) = Ψlock(Ψrot(x , y)) where

Ψrot(x , y) =

(
ρ cos θ −ρ sin θ
ρ sin θ ρ cos θ

)(
x
y

)
and Ψlock rounds the input to the nearest point in the grid

G = {(m, (2n + 1)ε) ∈ R2 : m, n ∈ Z} .

It is easy to show that this model has an energy dissipation principle:

|Ψ(x , y)|2 ≤ α|(x , y)|2 + β

for α ∈ (0, 1) and β > 0.
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(a)

Figure: The red square
is the trajectory un = 0.
The blue dots are the
positions of the forecast
ensemble Ψ(v+

0 ),
Ψ(v−

0 ). Given the
locking mechanism in
Ψ, this is a natural
configuration.
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(b)

Figure: We make an
observation (H shown
below) and perform the
analysis step. The green
dots are v+

1 , v−
1 .

H =

(
1 0
ε−2 1

)
y1 = (ξ1,x , ξ1,y + ε−2ξ1,x)

v±1 ≈ (x̂ ,±ε− 2x̂/(1 + 2ε2))

David Kelly (CIMS) Data assimilation October 29, 2015 14 / 22



(c)

Figure: Beginning the
next assimilation step.
Apply Ψrot to the
ensemble (blue dots)

David Kelly (CIMS) Data assimilation October 29, 2015 14 / 22



(d)

Figure: Apply Ψlock .
The blue dots are the
forecast ensemble
Ψ(v+

1 ), Ψ(v−
1 ). Exact

same as frame 1, but
higher energy orbit. The
cycle repeats leading to
exponential growth.
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Theorem (K.-Majda-Tong 15 PNAS)

For any N > 0 and any p ∈ (0, 1) there exists a choice of
parameters such that

P
(
|v (k)n | ≥ Mn for all n ≥ N

)
≥ 1− p

where Mn is an exponentially growing sequence.

ie - The filter can be made to grow exponentially for an arbitrarily long
time with an arbitrarily high probability.
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2- Are there scenarios where EnKF does
inherit an energy principle?
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Inheriting an energy principle

Suppose we know the model satisfies an energy principle

|Ψ(x)|2 ≤ α|x |2 + β

for α ∈ (0, 1), β > 0. Does the filter inherit the energy
principle?

En|v (k)
n+1|

2 ≤ α′|v (k)
n |2 + β′

This is a crucial component of ergodicity (stability).
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Observable energy (Tong, Majda, K. 15)

We have
v
(k)
n+1 = (I − Kn+1H)Ψ(v

(k)
n ) + Kn+1Hy

(k)
n+1

Start by looking at the observed part:

Hv
(k)
n+1 = (H − HKn+1H)Ψ(v

(k)
n ) + HKn+1Hy

(k)
n+1 .

But notice that

(H − HKn+1H) = (H − HĈn+1H
T (I + HĈn+1H

T )−1H)

= (I + HĈn+1H
T )−1H

Hence
|(H − HKn+1H)Ψ(v

(k)
n )| ≤ |HΨ(v

(k)
n )|
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Observable energy (Tong, Majda, K. 15)

We have the energy estimate

En|Hv
(k)
n+1|

2 ≤ (1 + δ)|HΨ(v
(k)
n )|2 + β′

for arb small δ. Unfortunately, the same trick doesn’t work for the
unobserved variables ... However, if we assume an observable energy
criterion instead:

|HΨ(v
(k)
n )|2 ≤ α|Hv

(k)
n |2 + β (?)

Then we obtain a Lyapunov function for the observed components of the
filter:

|Hv
(k)
n |2 ≤ α′|Hv

(k)
n |2 + β′ .

eg. (?) is true for linear dynamics if there is no interaction between
observed and unobserved variables at infinity.
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Can we do better than the
meteorologists?
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Covariance inflation (Tong, Majda, K. 15)
We modify algorithm by introducing a covariance inflation :

Ĉn 7→ Ĉn + λnI

where
λn+1 ∝ Θn+11(Θn+1 > Λ)

Θn+1 =

√√√√ 1

K

K∑
k=1

|y (k)n+1 − HΨ(v
(k)
n )|2

and Λ is some constant threshold. If the predictions are near the
observations, then there is no inflation.

Thm. The modified EnKF inherits an energy principle from the model.

|Ψ(x)|2 ≤ α|x |2 + β ⇒ En|v (k)n+1|
2 ≤ α′|v (k)n |2 + β′

Consequently, the modified EnKF is stable (ergodic).
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All my slides are on my website (www.dtbkelly.com) Thank you!
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