Data assimilation in high dimensions

David Kelly

Kody Law Andy Majda Andrew Stuart Xin Tong

Courant Institute New York University New York NY www.dtbkelly.com

February 3, 2016

DPMMS, University of Cambridge

David Kelly (CIMS)

Data assimilation

What is data assimilation?

Suppose *u* satisfies

$$\frac{d \mathbf{u}}{dt} = F(\mathbf{u})$$

with some **unknown** initial condition u_0 . We are most interested in geophysical models, so think high dimensional, nonlinear, possibly stochastic.

Suppose we make *partial*, *noisy* observations at times t = h, 2h, ..., nh, ...

$$y_n = Hu_n + \xi_n$$

where *H* is a linear operator (think low rank projection), $u_n = u(nh)$, and $\xi_n \sim N(0, \Gamma)$ iid.

The aim of **data assimilation** is to say something about the conditional distribution of u_n given the observations $\{y_1, \ldots, y_n\}$

David Kelly (CIMS)

Data assimilation

How does filtering work: (initialization)

How does filtering work: (forecast)

Figure: Apply the time h flow map Ψ . This produces a new probability measure which is our forecasted estimate of u_1 . This is called the forecast step.

How does filtering work: (make an observation)

How does filtering work: (find best fit using Bayes)

Problems in high dimensions

In **numerical weather prediction** the state dimension is $O(10^9)$.

- 1) Difficult to store a density of this size
- **2**) Computing the 'forecast step' is an integration over the state space.
- We need **low dimensional** approximations of the filtering problem.

We will look at the Ensemble Kalman filter.

Ensemble Kalman filter (Evensen 94)

Figure: Start with *K* ensemble members drawn from some distribution. Empirical representation of u_0 . The ensemble members are denoted $v_0^{(k)}$.

Only KN numbers are stored.

David Kelly (CIMS)

Data assimilation

February 3, 2016 5 / 12

Ensemble Kalman filter (Forecast step)

Ensemble Kalman filter (Make obs)

Ensemble Kalman filter (Perturb obs)

Figure: Turn the observation into *K* artificial observations by perturbing by the same source of observational noise.

Ensemble Kalman filter (find best fit using Bayes)

$$\mathbf{v}_1^{(k)} = \Psi(\mathbf{v}_0^{(k)}) + \mathbf{K}_1(\mathbf{y}_1^{(k)} - H\Psi(\mathbf{v}_0^{(k)}))$$

Why should mathematicians be interested?

A widely used algorithm (NWP, disease forecasting, chemical reactions) with many questions and not so many answers:

- 1 Is the filter stable to perturbations? *eg. Will different initializations converge? (ergodicity)*
- 2 Is the filter accurate? Is the posterior consistent with the true signal?
- 3 Can we design mathematically sensible alternative algorithms?
- 4 Can we understand why/when the filter fails?

Catastrophic filter divergence

Lorenz-96: $\dot{u}_j = (u_{j+1} - u_{j-2})u_{j-1} - u_j + F$ with j = 1, ..., 40. Periodic BCs. Observe every fifth node. (Harlim-Majda 10, Gottwald-Majda 12)

True solution in a bounded set, but filter **blows up** to machine infinity in finite time!

David Kelly (CIMS)

Data assimilation

For complicated models, only heuristic arguments offered as explanation.

Can we **prove** it for a simpler constructive model?

David Kelly (CIMS)

The rotate-and-lock map (K., Majda, Tong. PNAS 15.)

The model $\Psi : \mathbb{R}^2 \to \mathbb{R}^2$ is a composition of two maps $\Psi(x, y) = \Psi_{lock}(\Psi_{rot}(x, y))$ where

$$\Psi_{rot}(x,y) = \begin{pmatrix} \rho \cos \theta & -\rho \sin \theta \\ \rho \sin \theta & \rho \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

and $\Psi_{\textit{lock}}$ rounds the input to the nearest point in the grid

$$\mathcal{G} = \{(m,(2n+1)arepsilon)\in\mathbb{R}^2:m,n\in\mathbb{Z}\}$$
 .

It is easy to show that this model has an energy dissipation principle:

$$|\Psi(x,y)|^2 \le \alpha |(x,y)|^2 + \beta$$

for $\alpha \in (0, 1)$ and $\beta > 0$.

David Kelly (CIMS)

Figure: The red square is the trajectory $u_n = 0$. The blue dots are the positions of the forecast ensemble $\Psi(v_0^+)$, $\Psi(v_0^-)$. Given the locking mechanism in Ψ , this is a natural configuration.

The filter is 'sure' that $u_1 = \hat{x}$ (the dashed line). The filter deduces that the observation is approximately $(y_1, y_2) = (\hat{x}, \varepsilon^{-2}\hat{x} + u_2)$. Thus $v_1^{\pm} \approx (\hat{x}, -\varepsilon^{-2}\hat{x})$

Figure: Beginning the next assimilation step. Apply Ψ_{rot} to the ensemble (blue dots)

Figure: Apply Ψ_{lock} . The blue dots are the forecast ensemble $\Psi(\mathbf{v}_1^+), \Psi(\mathbf{v}_1^-)$. Exact same as frame 1, but higher energy orbit. The cycle repeats leading to **exponential growth**. Theorem (K.-Majda-Tong 15 PNAS) For any N > 0 and any $p \in (0, 1)$ there exists a choice of parameters such that

$${\sf P}\left(|m{v}_n^{(k)}|\geq M_n ext{ for all } n\leq N
ight)\geq 1-p$$

where M_n is an exponentially growing sequence.

ie - The filter can be made to grow exponentially for an arbitrarily long time with an arbitrarily high probability.

References

1 - D. Kelly, K. Law & A. Stuart. *Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time.* **Nonlinearity** (2014).

2 - D. Kelly, A. Majda & X. Tong. *Concrete ensemble Kalman filters with rigorous catastrophic filter divergence*. **Proc. Nat. Acad. Sci.** (2015).

3 - X. Tong, A. Majda & D. Kelly. *Nonlinear stability and ergodicity of ensemble based Kalman filters*. **Nonlinearity** (2016).

4 - X. Tong, A. Majda & D. Kelly. *Nonlinear stability of the ensemble Kalman filter with adaptive covariance inflation*. To appear in **Comm. Math. Sci.** (2015).

All my slides are on my website (www.dtbkelly.com) Thank you!

David Kelly (CIMS)

Data assimilation