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What is data assimilation?

Suppose u satisfies
du

dt
= F (u)

with some unknown initial condition u0. We are most interested in
geophysical models, so think high dimensional, nonlinear, possibly
stochastic.

Suppose we make partial, noisy observations at times t = h, 2h, . . . , nh, . . .

yn = Hun + ξn

where H is a linear operator (think low rank projection), un = u(nh), and
ξn ∼ N(0, Γ) iid.

The aim of data assimilation is to say something about the conditional
distribution of un given the observations {y1, . . . , yn}
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How does filtering work: (initialization)
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Figure: The blue circle
represents our guess of
u0. Due to the
uncertainty in u0, this is
a probability measure.
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How does filtering work: (forecast)
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Figure: Apply the time h
flow map Ψ. This
produces a new
probability measure
which is our forecasted
estimate of u1. This is
called the forecast step.
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How does filtering work: (make an observation)
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Figure: We make an
observation
y1 = Hu1 + ξ1. In the
picture, we only observe
the x variable.
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How does filtering work: (find best fit using Bayes)
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Figure:
P(u1|y1) ∝ P(y1|u1)P(u1)
(Bayes formula)
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Problems in high dimensions

In numerical weather prediction the state dimension is O(109).

1) Difficult to store a density of this size

2) Computing the ‘forecast step’ is an integration over the state
space.

We need low dimensional approximations of the filtering problem.

We will look at the Ensemble Kalman filter.
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Ensemble Kalman filter (Evensen 94)
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Figure: Start with K
ensemble members
drawn from some
distribution. Empirical
representation of u0.
The ensemble members
are denoted v

(k)
0 .

Only KN numbers are stored.
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Ensemble Kalman filter (Forecast step)
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Figure: Apply the
dynamics Ψ to each
ensemble member.
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Ensemble Kalman filter (Make obs)
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Figure: Make an
observation.
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Ensemble Kalman filter (Perturb obs)
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Figure: Turn the
observation into K
artificial observations by
perturbing by the same
source of observational
noise.

y
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1 = y1 + ξ

(k)
1
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Ensemble Kalman filter (find best fit using Bayes)
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Figure: Update each
member using the
‘Kalman update
formula’. This is a linear
approximation of Bayes.
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Why should mathematicians be interested?

A widely used algorithm (NWP, disease forecasting, chemical reactions)
with many questions and not so many answers:

1 - Is the filter stable to perturbations? eg. Will different initializations
converge? (ergodicity)

2 - Is the filter accurate? Is the posterior consistent with the true signal?

3 - Can we design mathematically sensible alternative algorithms?

4 - Can we understand why/when the filter fails?
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Catastrophic filter divergence
Lorenz-96: u̇j = (uj+1 − uj−2)uj−1 − uj + F with j = 1, . . . , 40. Periodic
BCs. Observe every fifth node. (Harlim-Majda 10, Gottwald-Majda 12)

True solution in a bounded set, but filter blows up to machine infinity in
finite time!
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For complicated models, only
heuristic arguments offered as

explanation.
Can we prove it for a simpler constructive model?
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The rotate-and-lock map (K., Majda, Tong. PNAS 15.)

The model Ψ : R2 → R2 is a composition of two maps
Ψ(x , y) = Ψlock(Ψrot(x , y)) where

Ψrot(x , y) =

(
ρ cos θ −ρ sin θ
ρ sin θ ρ cos θ

)(
x
y

)
and Ψlock rounds the input to the nearest point in the grid

G = {(m, (2n + 1)ε) ∈ R2 : m, n ∈ Z} .

It is easy to show that this model has an energy dissipation principle:

|Ψ(x , y)|2 ≤ α|(x , y)|2 + β

for α ∈ (0, 1) and β > 0.
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(a)

Figure: The red square
is the trajectory un = 0.
The blue dots are the
positions of the forecast
ensemble Ψ(v+

0 ),
Ψ(v−

0 ). Given the
locking mechanism in
Ψ, this is a natural
configuration.
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(b)

Figure: We make an
observation (H shown
below) and perform the
analysis step. The green
dots are v+

1 , v−
1 .

Observation matrix

H =

(
1 0
ε−2 1

)

The filter is ‘sure’ that u1 = x̂ (the dashed line). The filter deduces that
the observation is approximately (y1, y2) = (x̂ , ε−2x̂ + u2).

Thus v±1 ≈ (x̂ ,−ε−2x̂)
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(c)

Figure: Beginning the
next assimilation step.
Apply Ψrot to the
ensemble (blue dots)
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(d)

Figure: Apply Ψlock .
The blue dots are the
forecast ensemble
Ψ(v+

1 ), Ψ(v−
1 ). Exact

same as frame 1, but
higher energy orbit. The
cycle repeats leading to
exponential growth.
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Theorem (K.-Majda-Tong 15 PNAS)

For any N > 0 and any p ∈ (0, 1) there exists a choice of
parameters such that

P
(
|v (k)n | ≥ Mn for all n ≤ N

)
≥ 1− p

where Mn is an exponentially growing sequence.

ie - The filter can be made to grow exponentially for an arbitrarily long
time with an arbitrarily high probability.
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All my slides are on my website (www.dtbkelly.com) Thank you!
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