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Why use stochastic models?

The basic system we are trying to model is of the form

dx
— = F(x,y
dt ( J )
where x are resolved variables evolving on a slow timescale and y are

unresolved variables evolving on a fast timescale.

Eg. x are climate variables, with a response time of years and y are
weather effects, with a response time of hours.

Because of this structure, these systems exhibit features of stochastic
processes - most importantly variability.
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Outline

1 - Building a stochastic model - SDEs.

2 - Stochastic calculus ... different to normal
calculus

3 - Statistics of SDEs
4 - Numerical schemes for SDEs.
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1.

How can we build a stochastic model?
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Building a stochastic model

Suppose we are trying to model a perturbed system

% = F(x) + noise

We build this model using an approximation.

Fix some At < 1 and let xx ~ x(kAt). If the noise is independent of x,
then we can write

Xk41 = Xk + F(Xk)At+ AWy .

Think of AW/ as all the noise accumulated over the time step At.
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What properties should we require of AW 7

There are a few natural assumptions to make about AW that make the
model a lot simpler.

1. The sequence AW, AW, AWS3, ... should be i.i.d.
2. AW should be Gaussian.

3. EAW, =0.

4. EA Wi ~ At.
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Brownian motion

Since AWy are noise increments, we should add them up!

In the limit At — 0, the random path is called Brownian motion.
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Building a stochastic model

Returning to the approximate model
Xk4+1 = Xk + F(Xk)At + AWy .
To see what “ODE" this represents, we write

AW
At

Xk4+1 — Xk
Xktl = Xk _
At (i) +

this is clearly an approximation of

dx dWw
X _F ar
g~ T+

The object ‘Z—Vtv is called white noise.
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Building a stochastic model

As an ODE, the model is not particularly well defined, since W is

nowhere differentiable. That means dthV is nowhere defined!

This is not surprising, since

AWN\? 1
E = .
<At> At
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Building a stochastic model

Mathematically, it doesn't matter that the ODE is not well defined. The

integral equation is well defined

Xk4+1 = Xk + F(Xk)At—i- AW, .

Then x(t) = x|¢/a¢| is given by

[t/At]—1 [t/At]—1
x(t)=x(0)+ Y Fla)At+ > AW,
k=0 k=0

This is clearly an approximation of

x(t) = x(0) + /0 F(x(s))ds + W(t)
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Building a stochastic model

The equation
t
x(t) = x(0) —|—/ F(x(s))ds + W(t)
0
is called a Stochastic Differential Equation (SDE).

We often use the shorthand
dx = F(x)dt + dW

When the noise doesn't depend on the solution x, the noise is called
additive.
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Building a stochastic model: multiplicative noise

Suppose the magnitude of the noise depends on the state of the model

[t/At]—1 [t/At]-1
x()=x(0)+ > Fla)At+ > Glx)AW,
k=0 k=0

Under certain assumptions on G(x), the limit of ZU/A” ! G(xk) AW
exists and is called an Ité integral.

The limit becomes

x(t) = x(0) + /Ot F(x(s))ds + /Ot G(x(s))dW(s) .
In shorthand, this is written

dx = F(x)dt + G(x)dW
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Stochastic Differential Equations

There are several different interpretations as to what it means to be a
solution to the SDE

dx = F(x)dt + G(x)dW .

To an applied mathematician, the most natural is simply that x is the limit
of the approximation defined in the previous slides.

A more rigorous way is to define the Itd integral [ YdW for some space of
random paths Y, and then construct a fixed point argument on that space.
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2.

How does stochastic calculus work?
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It is natural to think that
dx
dx = —dt
T

But for SDEs this is false... If x isn't differentiable, then
normal calculus doesn't work.
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Stochastic calculus

Eg. Suppose we want to write down an SDE whose solution is
x(t) = W2(t). One would expect that

dx =2WdW
but this is wrong! To see why, we go back to the discretization

Xip1 = Xk = Wiy = Wi = (Wiesr + Wi )(Wiga — W)
= 2Wi(Wiq1 — Wi) + (Wigr — Wi)(Weyr — W)
= 2W AW + (AW)?
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Stochastic calculus

Adding them up
[t/At]-1 lt/At]—1

x(t) = x(0) + 2 Z W AW + Z (AW,)?

The first sum (by definition) converges to an It6 integral. The limit of the
second sum can be computed using the Law of Large Numbers (like the
ergodic theorem). We obtain the limit

x(t) = x(0) + 2/; W(s)dW(s) + t

Or in short
dx =2WdW + dt
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[to's formula

In general, the rules of stochastic calculus is determined by I1td’s
formula. This is a stochastic chain-rule.

Theorem
Suppose that x is the solution to

dx = F(x)dt + G(x)dW
and that ¢ is some smooth enough function. Then
do(x) = ¢/ (x)ax + 30" (x) 62 ()l
1
= ¢ ()(F(x)dt + G(x)dW) + 5¢"(x) G*(x)dt
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An example of 1to’'s formula

Consider the following stochastic model called geometric Brownian
motion (gBm) (stock price, population model with noisy growth rate)

dx = rxdt + oxdW ,

where r, o are constants.
To solve this using normal calculus, we would write

d
7)( =rdt+ odW

then integrate. Instead we must use It6’s formula.
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An example of 1to’'s formula

By 1t6’s formula we have

1 1
dlog(x) = dx _ 2—2(ax)2dt =(r— 502)dt +odW .
X x

And integrating, we get

log(x(¢)) = log(x(0)) + (r — %&)r +oW(t)

SO
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Stratonovich integrals

Stochastic models are very sensitive to the source of noise. Suppose

that W¢ — W was a smooth approximation of Brownian motion. Then

the (random) ODE makes perfect sense.

dx® _ L dWe
el F(x®) 4+ G(x )7dt

We can define the stochastic model as the limit xX* — x as ¢ — 0.

One would guess that x solves

dx = F(x)dt + G(x)dW

But it doesn’t!
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Stratonovich integrals

Eg. Back to the gBm example, suppose that

LS|
= rXx ox
dt dt

We will show that the limit is not
dx = rxdt + oxdW

For each fixed ¢, since everything is piecewise smooth, normal calculus

works. So in fact .

dt

dt

log(x*)=r+o

and
x°(t) = x(0) exp (rt + W4(t))
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Stratonovich integrals

The limit is clearly
x(t) = x(0) exp (rt + W(t)) .
One can check that this solves the SDE
dx =(r+ %02)th +oxdW .
When the noise arises in this way, one instead writes
dx =rxdt+oxodW ,

and the stochastic integral is called a Stratonovich integral. It is easy to
convert between Itd and Stratonovich integrals.

David Kelly (UNC) Stochastic Climate November 16, 2013 23 /36



[to vs Stratonovich

From a modeling standpoint, one should decide a priori how their noise
enters the model.

If the noise enters as a discrete process (e.g. weather effects like rainfall)
then one should use 1t integrals.

If the noise enters as a continuous process (e.g. fast chaotic effects)
then one should use Stratonovich integrals.
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Recap

We have seen that
1 - SDEs arise naturally as stochastic models.
2 - SDEs have their own calculus.

3 - SDEs are sensitive to the source of noise.
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3.

Main advantage of SDEs -
their statistics are extremely well
understood.
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The statistics of SDEs

The statistical properties of SDEs are very well understood. Let's look at
our gBm example.

x(t) = x(0) + r/otx(s)ds + U/Otx(s)dW(s) .

We can compute the mean. Clearly we have

Ex(t) = Ex(0) + r/ot Ex(s)ds + oE </Otx(s)dW(s)> :

But E (fot x(s)dW(s)) = 0. Why? Look at the discretization again

" [t/At]—-1 [t/At]—1
E </ x(s)dW(s)> =E[ ) xaW,|= ) ExEAW,=0
0 k=0 k=0

This follows from the fact that x, only depends on the past increments of
AW and must be independent of AWy.
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The statistics of SDEs

Hence we have .
Ex(t) = x(0) +/ rEx(s)ds .
0

In particular, the mean follows the original noise-free model. This is true
for all SDEs where the noise-free model is linear.

If m(t) = Ex(t) then
dm

=rm.

dt

David Kelly (UNC) Stochastic Climate November 16, 2013 28 / 36



The statistics of SDEs

We can compute the variance using It6's formula

d(x?) = 2xdx + 0%x2dt = 2(r + 02)x%dt + 20x*d W
Hence

Ex(t)? = Ex(0)* 4 2(r + 0?) /0 Ex(s)%ds

and so if v(t) = E(x(t) — m(t))? then

d
d—‘t/:202v.
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Connection to PDEs

For all other statistics, there is an extremely useful tool. The density
p(z,t) of x(t) is the solution to the PDE

Deplz, 1) = ~0:(F(2)olz. 1) + 502(G (2 (2. )

where the initial condition is the density of x(0), for instance a Dirac delta.

This is called the Fokker-Planck equation.
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Connection to PDEs

Eg. Suppose we want the density of Brownian motion (dx = d W) started
from W(0) = 0. Then

1
8t”p(z7 t) = Eagp(zv t) :

This is just the heat equation.|f initial condition is dg then

1 —z°
p(Z, t) = \/ﬁ exp <2f)

Unsurprising given that W(t) must be a Gaussian with EWW/(t) = 0 and
EW(t)®> =t
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3

Numerical schemes for SDEs.
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Numerics for SDEs

Alternatively, one can generate statistics by sampling. This can be
achieved by solving the equations numerically.

Numerics are extremely important - Most practitioners only interact with
the numerics.

Unfortunately, they are quite subtle. As we saw from the Stratonovich

example, it is common for a natural approximation to yield wrong SDE in
the limit.
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Numerics for SDEs

The most common scheme is the one used to introduce SDEs. Namely,
Xk4+1 = Xk + F(Xk)At + G(Xk)AWk .

One obtains AWy by simulating a Gaussian random variable (which is
easy). This is called the Euler-Maruyama scheme.

It always yields the correct limit.

As with ODEs, the EM scheme is not very stable. For non-linear

systems, you might have to use extremely small At to get a reasonable

answer.
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Numerics for SDEs

A traditional ODE way around this stability problem is to make the
scheme implicit. For example, the trapezoidal rule

F(xk) + F(X"“)At+ G(xk) + G(xk+1)
2 2

Xk+1 = Xk + AW
But this gives the wrong limit! In fact the limit of this scheme is

dx = F(x)dt + G(x) o dW .

The same SDE, but with Stratonovich instead of [t6.

Moral: be careful with your numerics ...
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Next lecture ...

Looking at REAL stochastic climate
models.
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